ﻻ يوجد ملخص باللغة العربية
Control of surface functionalization of MXenes holds great potential, and in particular, may lead to tuning of magnetic and electronic order in the recently reported magnetic Cr2TiC2Tx. Here, vacuum annealing experiments of Cr2TiC2Tx are reported with in situ electron energy loss spectroscopy and novel in situ Cr K-edge extended energy loss fine structure analysis, which directly tracks the evolution of the MXene surface coordination environment. These in situ probes are accompanied by benchmarking synchrotron X-ray absorption fine structure measurements and density functional theory calculations. With the etching method used here, the MXene has an initial termination chemistry of Cr2TiC2O1.3F0.8. Annealing to 600 C results in the complete loss of -F, but -O termination is thermally stable up to (at least) 700 C. These findings demonstrate thermal control of -F termination in Cr2TiC2Tx and offer a first step towards termination engineering this MXene for magnetic applications. Moreover, this work demonstrates high energy electron spectroscopy as a powerful approach for surface characterization in 2D materials.
The interfacial behavior of quantum materials leads to emergent phenomena such as two dimensional electron gases, quantum phase transitions, and metastable functional phases. Probes for in situ and real time surface sensitive characterization are cri
MXenes are two-dimensional materials with a rich set of remarkable chemical and electromagnetic properties, the latter including saturable absorption and intense surface plasmon resonances. To fully harness the functionality of MXenes for application
Magnetism of FeRh (001) films strongly depends on film thickness and surface terminations. While magnetic ground state of bulk FeRh is G-type antiferromagnetism, the Rh-terminated films exhibit ferromagnetism with strong perpendicular MCA whose energ
Two dimensional multiferroics inherit prominent physical properties from both low dimensional materials and magnetoelectric materials, and can go beyond their three dimensional counterparts for their unique structures. Here, based on density function
The structure of the Al_{70}Pd_{21}Mn_{9} surface has been investigated using high resolution scanning tunnelling microscopy (STM). From two large five-fold terraces on the surface in a short decorated Fibonacci sequence, atomically resolved surfac