ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared observations of the flaring maser source G358.93-0.03 -- SOFIA confirms an accretion burst from a massive young stellar object

130   0   0.0 ( 0 )
 نشر من قبل Bringfried Stecklum
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Class II methanol masers are signs of massive young stellar objects (MYSOs). Recent findings show that MYSO accretion bursts cause flares of these masers. Thus, maser monitoring can be used to identify such bursts. Burst-induced SED changes provide valuable information on a very intense phase of high-mass star formation. In mid-January 2019, a maser flare of the MYSO G358.93-0.03 was reported. ALMA and SMA imaging resolved the core of the star forming region and proved the association of the masers with the brightest continuum source MM1. However, no significant flux rise of the (sub)mm dust continuum was found. Thus, we performed NIR imaging with GROND and IFU spectroscopy with FIFI-LS aboard SOFIA to detect possible counterparts to the (sub)mm sources, and compare their photometry to archival measurements. The comparison of pre-burst and burst SEDs is of crucial importance to judge whether a luminosity increase due to the burst is present and if it triggered the maser flare. The FIR fluxes of MM1 measured with FIFI-LS exceed those from Herschel significantly, which clearly confirms the presence of an accretion burst. The second epoch data, taken about 16 months later, still show increased fluxes. Our RT modeling yielded major burst parameters and suggests that the MYSO features a circumstellar disk which might be transient. From the multi-epoch SEDs, conclusions on heating and cooling time-scales could be drawn. Circumstances of the burst-induced maser relocation have been explored. The verification of the accretion burst from G358 is another confirmation that Class II methanol maser flares represent an alert for such events. The few events known to date already indicate that there is a broad range in burst strength and duration as well as environmental characteristics. The G358 event is the shortest and least luminous MYSO accretion burst so far.

قيم البحث

اقرأ أيضاً

211 - B. Stecklum 2017
Methanol and water masers indicate young stellar objects. They often exhibit flares, and a fraction shows periodic activity. Several mechanisms might explain this behavior but the lack of concurrent infrared (IR) data complicates to identify the caus e. Recently, 6.7 GHz methanol maser flares were observed, triggered by accretion bursts of high-mass YSOs which confirmed the IR-pumping of these masers. This suggests that regular IR changes might lead to maser periodicity. Hence, we scrutinized space-based IR imaging of YSOs associated with periodic methanol masers. We succeeded to extract the IR light curve from NEOWISE data for the intermediate mass YSO G107.298+5.639. Thus, for the first time a relationship between the maser and IR variability could be established. While the IR light curve shows the same period of ~34.6 days as the masers, its shape is distinct from that of the maser flares. Possible reasons for the IR periodicity are discussed.
We report the detection of new 12.178, 12.229, 20.347, and 23.121 GHz methanol masers in the massive star-forming region G358.93-0.03, which are flaring on similarly short timescales (days) as the 6.668 GHz methanol masers also associated with this s ource. The brightest 12.178 GHz channel increased by a factor of over 700 in just 50 d. The masers found in the 12.229 and 20.347 GHz methanol transitions are the first ever reported and this is only the fourth object to exhibit associated 23.121 GHz methanol masers. The 12.178 GHz methanol maser emission appears to have a higher flux density than that of the 6.668 GHz emission, which is unusual. No associated near-infrared flare counterpart was found, suggesting that the energy source of the flare is deeply embedded.
Solar-mass stars form via circumstellar disk accretion (disk-mediated accretion). Recent findings indicate that this process is likely episodic in the form of accretion bursts, possibly caused by disk fragmentation. Although it cannot be ruled out th at high-mass young stellar objects (HMYSOs; $M>$8 M$_odot$, $L_{bol}>$5$times$10$^3$ L$_odot$) arise from the coalescence of their low-mass brethren, latest results suggest that they more likely form via disks. Accordingly, disk-mediated accretion bursts should occur. Here we report on the discovery of the first disk-mediated accretion burst from a $sim$20 M$_odot$ HMYSO. Our near-infrared images show the brightening of the central source and its outflow cavities. Near-infrared spectroscopy reveals emission lines typical of accretion bursts in low-mass protostars, but orders of magnitude more luminous. Moreover, the energy released and the inferred mass-accretion rate are also orders of magnitude larger. Our results identify disk accretion as the common mechanism of star formation across the entire stellar mass spectrum.
We present (sub)millimeter imaging at 0.5 resolution of the massive star-forming region G358.93-0.03 acquired in multiple epochs at 2 and 3 months following the recent flaring of its 6.7 GHz methanol maser emission. Using SMA and ALMA, we have discov ered 14 new Class II methanol maser lines ranging in frequency from 199 GHz to 361 GHz, which originate mostly from vt=1 torsionally-excited transitions and include one vt=2 transition. The latter detection provides the first observational evidence that Class II maser pumping involves levels in the vt=2 state. The masers are associated with the brightest continuum source (MM1), which hosts a line-rich hot core. The masers present a consistent curvilinear spatial velocity pattern that wraps around MM1, suggestive of a coherent physical structure 1200 au in extent. In contrast, the thermal lines exhibit a linear pattern that crosses MM1 but at progressive position angles that appear to be a function of either increasing temperature or decreasing optical depth. The maser spectral profiles evolved significantly over one month, and the intensities dropped by factors of 3.0 to 7.2, with the vt=2 line showing the largest change. A small area of maser emission from only the highest excitation lines closest to MM1 has disappeared. There are seven additional dust continuum sources in the protocluster, including another hot core (MM3). We do not find evidence for a significant change in (sub)millimeter continuum emission from any of the sources during the one month interval, and the total protocluster emission remains comparable to prior single dish measurements.
We present the results of multi-epoch very long baseline interferometry (VLBI) water (H2O) maser observations carried out with the VLBI Exploration of Radio Astrometry (VERA) toward the Cepheus A HW3d object. We measured for the first time relative p roper motions of the H2O maser features, whose spatio-kinematics traces a compact bipolar outflow. This outflow looks highly collimated and expanding through ~ 280 AU (400 mas) at a mean velocity of ~ 21 km/s (~ 6 mas/yr) without taking into account the turbulent central maser cluster. The opening angle of the outflow is estimated to be ~ 30{circ}. The dynamical time-scale of the outflow is estimated to be ~ 100 years. Our results provide strong support that HW3d harbors an internal massive young star, and the observed outflow could be tracing a very early phase of star formation. We also have analyzed Very Large Array (VLA) archive data of 1.3 cm continuum emission obtained in 1995 and 2006 toward Cepheus A. The comparative result of the HW3d continuum emission suggests the possibility of the existence of distinct young stellar objects (YSOs) in HW3d and/or strong variability in one of their radio continuum emission components.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا