ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase Slips and Metastability in Granular Boron-doped Nanocrystalline Diamond Microbridges

83   0   0.0 ( 0 )
 نشر من قبل Georgina Klemencic
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A phase slip is a localized disturbance in the coherence of a superconductor allowing an abrupt 2$pi$ phase shift. Phase slips are a ubiquitous feature of one-dimensional superconductors and also have an analogue in two-dimensions. Here we present electrical transport measurements on boron-doped nanocrystalline diamond (BNCD) microbridges where, despite their three-dimensional macroscopic geometry, we find clear evidence of phase slippage in both the resistance-temperature and voltage-current characteristics. We attribute this behavior to the unusual microstructure of BNCD. We argue that the columnar crystal structure of BNCD forms an intrinsic Josephson junction array that supports a line of phase slippage across the microbridge. The voltage-state in these bridges is metastable and we demonstrate the ability to switch deterministically between different superconducting states by applying electromagnetic noise pulses. This metastability is remarkably similar to that observed in $delta$-MoN nanowires, but with a vastly greater response voltage.

قيم البحث

اقرأ أيضاً

Boron-doped diamond granular thin films are known to exhibit superconductivity with an optimal critical temperature of Tc = 7.2K. Here we report the measured complex surface impedance of Boron-doped diamond films in the microwave frequency range usin g a resonant technique. Experimentally measured inductance values are in good agreement with estimates obtained from the normal state sheet resistance of the material. The magnetic penetration depth temperature dependence is consistent with that of a fully-gapped s-wave superconductor. Boron-doped diamond films should find application where high kinetic inductance is needed, such as microwave kinetic inductance detectors and quantum impedance devices.
We perform single- and multi-band Migdal-Eliashberg (ME) calculations with parameters exctracted from density functional theory (DFT) simulations to study superconductivity in the electric-field-induced 2-dimensional hole gas at the hydrogenated (111 ) diamond surface. We show that according to the Eliashberg theory it is possible to induce a high-T$_{text{c}}$ superconducting phase when the system is field-effect doped to a surface hole concentration of $6times10^{14},$cm$^{-2}$, where the Fermi level crosses three valence bands. Starting from the band-resolved electron-phonon spectral functions $alpha^2F_{jj}(omega)$ computed ab initio, we iteratively solve the self-consistent isotropic Migdal-Eliashberg equations, in both the single-band and the multi-band formulations, in the approximation of a constant density of states at the Fermi level. In the single-band formulation, we find T$_{text{c}}approx40,$K, which is enhanced between $4%$ and $8%$ when the multi-band nature of the system is taken into account. We also compute the multi-band-sensistive quasiparticle density of states to act as a guideline for future experimental works.
We have measured the resistance vs. temperature of more than 20 superconducting nanowires with nominal widths ranging from 10 to 22 nm and lengths from 100 nm to 1050 nm. With decreasing cross-sectional areas, the wires display increasingly broad res istive transitions. The data are in very good agreement with a model that includes both thermally activated phase slips close to Tc and quantum phase slips (QPS) at low temperatures, but disagree with an earlier model based on a critical value of R_n/Rq. Our measurements provide strong evidence for QPS in thin superconducting wires.
117 - K.-W. Lee , W. E. Pickett 2004
Superconductivity of boron-doped diamond, reported recently at T_c=4 K, is investigated exploiting its electronic and vibrational analogies to MgB2. The deformation potential of the hole states arising from the C-C bond stretch mode is 60% larger tha n the corresponding quantity in MgB2 that drives its high Tc, leading to very large electron-phonon matrix elements. The calculated coupling strength lambda ~ 0.5 leads to T_c in the 5-10 K range and makes phonon coupling the likely mechanism. Higher doping should increase T_c somewhat, but effects of three dimensionality primarily on the density of states keep doped diamond from having a T_c closer to that of MgB2.
We study quantum phase-slip (QPS) processes in a superconducting ring containing N Josephson junctions and threaded by an external static magnetic flux. In a such system, a QPS consists of a quantum tunneling event connecting two distinct classical s tates of the phases with different persistent currents [K. A. Matveev et al., Phys. Rev. Lett. 89, 096802 (2002)]. When the Josephson coupling energy EJ of the junctions is larger than the charging energy EC = e2/2C where C is the junction capacitance, the quantum amplitude for the QPS process is exponentially small in the ratio EJ/EC. At given magnetic flux each QPS can be described as the tunneling of the phase difference of a single junction of almost 2pi, accompanied by a small harmonic displacement of the phase difference of the other N-1 junctions. As a consequence the total QPS amplitude nu is a global property of the ring. Here we study the dependence of nu on the ring size N taking into account the effect of a finite capacitance C0 to ground which leads to the appearance of low-frequency dispersive modes. Josephson and charging effects compete and lead to a nonmonotonic dependence of the ring critical current on N. For N=infty, the system converges either towards a superconducting or an insulating state, depending on the ratio between the charging energy E0 = e2/2C0 and the Josephson coupling energy EJ.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا