ﻻ يوجد ملخص باللغة العربية
The thermodynamical study of the universe allow particle production in modified $f(T)$ ($T$ is the torsion scalar) theory of gravity within a flat FLRW framework for line element. The torsion scalar $T$ plays the same role as the Ricci scalar $R$ in the modified theories of gravity. We derived the $f(T)$ gravity models by taking $f(T)$ as the sum of $T$ and an arbitrary function of $T$ with three different arbitrary function. We observe that the particle production describes the accelerated expansion of the universe without a cosmological constant or any unknown quintessence component. Also, we discussed the supplementary pressure, particle number density and particle production rate for three cases.
The recent article entitled Cosmological inviability of $f(R,T)$ gravity [Phys. Rev. D 95 (2017) 123536], by H. Velten and T.R.P. Caram^es, claims that the reference A transition from a decelerated to an accelerated phase of the universe expansion fr
In this paper, we employ mimetic $f(R,T)$ gravity coupled with Lagrange multiplier and mimetic potential to yield viable inflationary cosmological solutions consistent with latest Planck and BICEP2/Keck Array data. We present here three viable inflat
The recently proposed $f(Q, T)$ gravity (Xu et al. Eur. Phys. J. C textbf{79} (2019) 708) is an extension of the symmetric teleparallel gravity. The gravitational action $L$ is given by an arbitrary function $f$ of the non-metricity $Q$ and the trace
We present a traversable wormhole solution using the traceless $f(R,T)$ theory of gravity. In the $f(R,T)$ gravity, the Ricci scalar $R$ in the Einstein-Hilbert action is replaced by a function of $R$ and trace of the energy momentum tensor $T$. The
Wormholes are a solution for General Relativity field equations which characterize a passage or a tunnel that connects two different regions of space-time and is filled by some sort of exotic matter, that does not satisfy the energy conditions. On th