ﻻ يوجد ملخص باللغة العربية
We present a new summary statistic for weak lensing observables, higher than second order, suitable for extracting non-Gaussian cosmological information and inferring cosmological parameters. We name this statistic the starlet $ell_1$-norm as it is computed via the sum of the absolute values of the starlet (wavelet) decomposition coefficients of a weak lensing map. In comparison to the state-of-the-art higher-order statistics -- weak lensing peak counts and minimum counts, or the combination of the two -- the $ell_1$-norm provides a fast multi-scale calculation of the full void and peak distribution, avoiding the problem of defining what a peak is and what a void is: The $ell_1$-norm carries the information encoded in all pixels of the map, not just the ones in local maxima and minima. We show its potential by applying it to the weak lensing convergence maps provided by the MassiveNus simulations to get constraints on the sum of neutrino masses, the matter density parameter, and the amplitude of the primordial power spectrum. We find that, in an ideal setting without further systematics, the starlet $ell_1$-norm remarkably outperforms commonly used summary statistics, such as the power spectrum or the combination of peak and void counts, in terms of constraining power, representing a promising new unified framework to simultaneously account for the information encoded in peak counts and voids. We find that the starlet $ell_1$-norm outperforms the power spectrum by $72%$ on M$_{ u}$, $60%$ on $Omega_{rm m}$, and $75%$ on $A_{rm s}$ for the Euclid-like setting considered; it also improves upon the state-of-the-art combination of peaks and voids for a single smoothing scale by $24%$ on M$_{ u}$, $50%$ on $Omega_{rm m}$, and $24%$ on $A_{rm s}$.
Weak gravitational lensing, the deflection of light by mass, is one of the best tools to constrain the growth of cosmic structure with time and reveal the nature of dark energy. I discuss the sources of systematic uncertainty in weak lensing measurem
Cosmological weak lensing is the powerful probe of cosmology. Here we address one of the most fundamental, statistical questions inherent in weak lensing cosmology: whether or not we can recover the initial Gaussian information content of large-scale
Upcoming surveys such as LSST{} and Euclid{} will significantly improve the power of weak lensing as a cosmological probe. To maximise the information that can be extracted from these surveys, it is important to explore novel statistics that compleme
We propose counting peaks in weak lensing (WL) maps, as a function of their height, to probe models of dark energy and to constrain cosmological parameters. Because peaks can be identified in two-dimensional WL maps directly, they can provide constra
In this paper, we show that Minkowski Functionals (MFs) of weak gravitational lensing (WL) convergence maps contain significant non-Gaussian, cosmology-dependent information. To do this, we use a large suite of cosmological ray-tracing N-body simulat