ترغب بنشر مسار تعليمي؟ اضغط هنا

Bass-Serre theory for Lie algebras: a homological approach

90   0   0.0 ( 0 )
 نشر من قبل Conchita Mart\\'inez P\\'erez
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a version of the Bass-Serre theory for Lie algebras (over a field $k$) via a homological approach. We define the notion of fundamental Lie algebra of a graph of Lie algebras and show that this construction yields Mayer-Vietoris sequences. We extend some well known results in group theory to $mathbb{N}$-graded Lie algebras: for example, we show that one relator $mathbb{N}$-graded Lie algebras are iterated HNN extensions with free bases which can be used for cohomology computations and apply the Mayer-Vietoris sequence to give some results about coherence of Lie algebras.

قيم البحث

اقرأ أيضاً

We consider homological finiteness properties $FP_n$ of certain $mathbb{N}$-graded Lie algebras. After proving some general results, see Theorem A, Corollary B and Corollary C, we concentrate on a family that can be considered as the Lie algebra vers ion of the generalized Bestvina-Brady groups associated to a graph $Gamma$. We prove that the homological finiteness properties of these Lie algebras can be determined in terms of the graph in the same way as in the group case.
A weakly complete vector space over $mathbb{K}=mathbb{R}$ or $mathbb{K}=mathbb{C}$ is isomorphic to $mathbb{K}^X$ for some set $X$ algebraically and topologically. The significance of this type of topological vector spaces is illustrated by the fact that the underlying vector space of the Lie algebra of any pro-Lie group is weakly complete. In this study, weakly complete real or complex associative algebras are studied because they are necessarily projective limits of finite dimensional algebras. The group of units $A^{-1}$ of a weakly complete algebra $A$ is a pro-Lie group with the associated topological Lie algebra $A_{rm Lie}$ of $A$ as Lie algebra and the globally defined exponential function $expcolon Ato A^{-1}$ as the exponential function of $A^{-1}$. With each topological group, a weakly complete group algebra $mathbb{K}[G]$ is associated functorially so that the functor $Gmapsto mathbb{K}[G]$ is left adjoint to $Amapsto A^{-1}$. The group algebra $mathbb{K}[G]$ is a weakly complete Hopf algebra. If $G$ is compact, the $mathbb{R}[G]$ contains $G$ as the set of grouplike elements. The category of all real Hopf algebras $A$ with a compact group of grouplike elements whose linear span is dense in $A$ is shown to be equivalent to the category of compact groups. The group algebra $A=mathbb{R}[G]$ of a compact group $G$ contains a copy of the Lie algebra $mathcal{L}(G)$ in $A_{rm Lie}$; it also contains a copy of the Radon measure algebra $M(G,mathbb{R})$. The dual of the group algebra $mathbb{R}[G]$ is the Hopf algebra ${mathcal R}(G,mathbb{R})$ of representative functions of $G$. The rather straightforward duality between vector spaces and weakly complete vector spaces thus becomes the basis of a duality ${mathcal R}(G,mathbb{R})leftrightarrow mathbb{R}[G]$ and thus yields a new aspect of Tannaka duality.
113 - Lee Mosher , Michah Sageev , 2004
This paper addresses questions of quasi-isometric rigidity and classification for fundamental groups of finite graphs of groups, under the assumption that the Bass-Serre tree of the graph of groups has finite depth. The main example of a finite depth graph of groups is one whose vertex and edge groups are coarse Poincare duality groups. The main theorem says that, under certain hypotheses, if G is a finite graph of coarse Poincare duality groups then any finitely generated group quasi-isometric to the fundamental group of G is also the fundamental group of a finite graph of coarse Poincare duality groups, and any quasi-isometry between two such groups must coarsely preserves the vertex and edge spaces of their Bass-Serre trees of spaces. Besides some simple normalization hypotheses, the main hypothesis is the ``crossing graph condition, which is imposed on each vertex group G_v which is an n-dimensional coarse Poincare duality group for which every incident edge group has positive codimension: the crossing graph of G_v is a graph e_v that describes the pattern in which the codimension~1 edge groups incident to G_v are crossed by other edge groups incident to G_v, and the crossing graph condition requires that e_v be connected or empty.
296 - D.-M. Lu , Q.-S. Wu , J.J. Zhang 2005
The left and right homological integrals are introduced for a large class of infinite dimensional Hopf algebras. Using the homological integrals we prove a version of Maschkes theorem for infinite dimensional Hopf algebras. The generalization of Masc hkes theorem and homological integrals are the keys to study noetherian regular Hopf algebras of Gelfand-Kirillov dimension one.
We present a constructive approach to torsion-free gradings of Lie algebras. Our main result is the computation of a maximal grading. Given a Lie algebra, using its maximal grading we enumerate all of its torsion-free gradings as well as its positive gradings. As applications, we classify gradings in low dimension, we consider the enumeration of Heintze groups, and we give methods to find bounds for non-vanishing $ell^{q,p}$ cohomology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا