ترغب بنشر مسار تعليمي؟ اضغط هنا

Possible Atmospheric Diversity of Low Mass Exoplanets, some Central Aspects

67   0   0.0 ( 0 )
 نشر من قبل John Lee Grenfell
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Exoplanetary science continues to excite and surprise with its rich diversity. We discuss here some key aspects potentially influencing the range of exoplanetary terrestrial-type atmospheres which could exist in nature. We are motivated by newly emerging observations, refined approaches to address data degeneracies, improved theories for key processes affecting atmospheric evolution and a new generation of atmospheric models which couple physical processes from the deep interior through to the exosphere and consider the planetary-star system as a whole. Using the Solar System as our guide we first summarize the main processes which sculpt atmospheric evolution then discuss their potential interactions in the context of exoplanetary environments. We summarize key uncertainties and consider a diverse range of atmospheric compositions discussing their potential occurrence in an exoplanetary context.



قيم البحث

اقرأ أيضاً

Exoplanet science is one of the most thriving fields of modern astrophysics. A major goal is the atmospheric characterization of dozens of small, terrestrial exoplanets in order to search for signatures in their atmospheres that indicate biological a ctivity, assess their ability to provide conditions for life as we know it, and investigate their expected atmospheric diversity. None of the currently adopted projects or missions, from ground or in space, can address these goals. In this White Paper we argue that a large space-based mission designed to detect and investigate thermal emission spectra of terrestrial exoplanets in the MIR wavelength range provides unique scientific potential to address these goals and surpasses the capabilities of other approaches. While NASA might be focusing on large missions that aim to detect terrestrial planets in reflected light, ESA has the opportunity to take leadership and spearhead the development of a large MIR exoplanet mission within the scope of the Voyage 2050 long-term plan establishing Europe at the forefront of exoplanet science for decades to come. Given the ambitious science goals of such a mission, additional international partners might be interested in participating and contributing to a roadmap that, in the long run, leads to a successful implementation. A new, dedicated development program funded by ESA to help reduce development and implementation cost and further push some of the required key technologies would be a first important step in this direction. Ultimately, a large MIR exoplanet imaging mission will be needed to help answer one of mankinds most fundamental questions: How unique is our Earth?
The number of exoplanet detections continues to grow following the development of better instruments and missions. Key steps for the understanding of these worlds comes from their characterization and its statistical studies. We explore the metallici ty-period-mass diagram for known exoplanets by using an updated version of The Stellar parameters for stars With ExoplanETs CATalog (SWEET-Cat), a unique compilation of precise stellar parameters for planet-host stars provided for the exoplanet community. Here we focus on the planets with minimum mass below 30 M$_{oplus}$ which seems to present a possible correlation in the metallicity-period-mass diagram where the mass of the planet increases with both metallicity and period. Our analysis suggests that the general observed correlation may be not fully explained by observational biases. Additional precise data will be fundamental to confirm or deny this possible correlation.
We present the detection and follow-up observations of planetary candidates around low-mass stars observed by the K2 mission. Based on light-curve analysis, adaptive-optics imaging, and optical spectroscopy at low and high resolution (including radia l velocity measurements), we validate 16 planets around 12 low-mass stars observed during K2 campaigns 5-10. Among the 16 planets, 12 are newly validated, with orbital periods ranging from 0.96-33 days. For one of the planets (K2-151b) we present ground-based transit photometry, allowing us to refine the ephemerides. Combining our K2 M-dwarf planets together with the validated or confirmed planets found previously, we investigate the dependence of planet radius $R_p$ on stellar insolation and metallicity [Fe/H]. We confirm that for periods $Plesssim 2$ days, planets with a radius $R_pgtrsim 2,R_oplus$ are less common than planets with a radius between 1-2$,R_oplus$. We also see a hint of the radius valley between 1.5 and 2$,R_oplus$ that has been seen for close-in planets around FGK stars. These features in the radius/period distribution could be attributed to photoevaporation of planetary envelopes by high-energy photons from the host star, as they have for FGK stars. For the M dwarfs, though, the features are not as well defined, and we cannot rule out other explanations such as atmospheric loss from internal planetary heat sources, or truncation of the protoplanetary disk. There also appears to be a relation between planet size and metallicity: those few planets larger than about 3 $R_oplus$ are found around the most metal-rich M dwarfs.
Radial-velocity planet search campaigns are now beginning to detect low-mass Super-Earth planets, with minimum masses M sin i < 10 M_earth. Using two independently-developed methods, we have derived detection limits from nearly four years of the high est-precision data on 24 bright, stable stars from the Anglo-Australian Planet Search. Both methods are more conservative than a human analysing an individual observed data set, as is demonstrated by the fact that both techniques would detect the radial velocity signals announced as exoplanets for the 61 Vir system in 50% of trials. There are modest differences between the methods which can be recognised as arising from particular criteria that they adopt. What both processes deliver is a quantitative selection process such that one can use them to draw quantitative conclusions about planetary frequency and orbital parameter distribution from a given data set. Averaging over all 24 stars, in the period range P<300 days and the eccentricity range 0.0<e<0.6, we could have detected 99% of planets with velocity amplitudes K>7.1 m/s. For the best stars in the sample, we are able to detect or exclude planets with K>3 m/s, corresponding to minimum masses of 8 M_earth (P=5 days) or 17 M_earth (P=50 days). Our results indicate that the observed period valley, a lack of giant planets (M>100 M_earth) with periods between 10-100 days, is indeed real. However, for planets in the mass range 10-100 M_earth, our results suggest that the deficit of such planets may be a result of selection effects.
Precise atmospheric observations have been made for a growing sample of warm Neptunes. Here we investigate the correlations between these observations and a large number of system parameters to show that, at 95% confidence, the amplitude of a warm Ne ptunes spectral features in transmission correlates with either its equilibrium temperature (T_eq) or its bulk H/He mass fraction (f_HHe) --- in addition to the standard kT/mg scaling. These correlations could indicate either more optically-thick, photochemically-produced hazes at lower T_eq and/or higher-metallicity atmospheres for planets with smaller radii and lower f_HHe. %Since hazes must exist in some of these planets, we favor the former explanation. We derive an analytic relation to estimate the observing time needed with JWST/NIRISS to confidently distinguish a nominal gas giants transmission spectrum from a flat line. Using this tool, we show that these possible atmospheric trends could reduce the number of expected TESS planets accessible to JWST spectroscopy by up to a factor of eight. Additional observations of a larger sample of planets are required to confirm these trends in atmospheric properties as a function of planet or system quantities. If these trends can be confidently identified, the community will be well-positioned to prioritize new targets for atmospheric study and eventually break the complex degeneracies between atmospheric chemistry, composition, and cloud properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا