ترغب بنشر مسار تعليمي؟ اضغط هنا

(In)equality distance patterns and embeddability into Hilbert spaces

124   0   0.0 ( 0 )
 نشر من قبل Alexandru Chirv\\u{a}situ L.
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that compact Riemannian manifolds, regarded as metric spaces with their global geodesic distance, cannot contain a number of rigid structures such as (a) arbitrarily large regular simplices or (b) arbitrarily long sequences of points equidistant from pairs of points preceding them in the sequence. All of this provides evidence that Riemannian metric spaces admit what we term loose embeddings into finite-dimensional Euclidean spaces: continuous maps that preserve both equality as well as inequality. We also prove a local-to-global principle for Riemannian-metric-space loose embeddability: if every finite subspace thereof is loosely embeddable into a common $mathbb{R}^N$, then the metric space as a whole is loosely embeddable into $mathbb{R}^N$ in a weakened sense.



قيم البحث

اقرأ أيضاً

178 - Benoit Kloeckner 2011
A Wasserstein spaces is a metric space of sufficiently concentrated probability measures over a general metric space. The main goal of this paper is to estimate the largeness of Wasserstein spaces, in a sense to be precised. In a first part, we gener alize the Hausdorff dimension by defining a family of bi-Lipschitz invariants, called critical parameters, that measure largeness for infinite-dimensional metric spaces. Basic properties of these invariants are given, and they are estimated for a naturel set of spaces generalizing the usual Hilbert cube. In a second part, we estimate the value of these new invariants in the case of some Wasserstein spaces, as well as the dynamical complexity of push-forward maps. The lower bounds rely on several embedding results; for example we provide bi-Lipschitz embeddings of all powers of any space inside its Wasserstein space, with uniform bound and we prove that the Wasserstein space of a d-manifold has power-exponential critical parameter equal to d.
195 - Anthony Weston 2012
This work has been expanded and fully incorporated into arXiv:1203.5837. Cases of equality in the classical 2-negative type inequalities for Hilbert spaces are characterized in terms of balanced signed simplices. It follows that a metric subspace o f a Hilbert space H has strict 2-negative type if and only if it is affinely independent (when H is considered as a real vector space). This allows a complete description of Shkarins class M.
Let $(X, d)$ be a compact metric space and let $mathcal{M}(X)$ denote the space of all finite signed Borel measures on $X$. Define $I colon mathcal{M}(X) to R$ by [I(mu) = int_X int_X d(x,y) dmu(x) dmu(y),] and set $M(X) = sup I(mu)$, where $mu$ rang es over the collection of signed measures in $mathcal{M}(X)$ of total mass 1. The metric space $(X, d)$ is quasihypermetric if for all $n in N$, all $alpha_1, ..., alpha_n in R$ satisfying $sum_{i=1}^n alpha_i = 0$ and all $x_1, ..., x_n in X$, one has $sum_{i,j=1}^n alpha_i alpha_j d(x_i, x_j) leq 0$. Without the quasihypermetric property $M(X)$ is infinite, while with the property a natural semi-inner product structure becomes available on $mathcal{M}_0(X)$, the subspace of $mathcal{M}(X)$ of all measures of total mass 0. This paper explores: operators and functionals which provide natural links between the metric structure of $(X, d)$, the semi-inner product space structure of $mathcal{M}_0(X)$ and the Banach space $C(X)$ of continuous real-valued functions on $X$; conditions equivalent to the quasihypermetric property; the topological properties of $mathcal{M}_0(X)$ with the topology induced by the semi-inner product, and especially the relation of this topology to the weak-$*$ topology and the measure-norm topology on $mathcal{M}_0(X)$; and the functional-analytic properties of $mathcal{M}_0(X)$ as a semi-inner product space, including the question of its completeness. A later paper [Peter Nickolas and Reinhard Wolf, Distance Geometry in Quasihypermetric Spaces. II] will apply the work of this paper to a detailed analysis of the constant $M(X)$.
Let $(X, d)$ be a compact metric space and let $mathcal{M}(X)$ denote the space of all finite signed Borel measures on $X$. Define $I colon mathcal{M}(X) to R$ by [ I(mu) = int_X int_X d(x,y) dmu(x) dmu(y), ] and set $M(X) = sup I(mu)$, where $mu$ ra nges over the collection of signed measures in $mathcal{M}(X)$ of total mass 1. This paper, with an earlier and a subsequent paper [Peter Nickolas and Reinhard Wolf, Distance geometry in quasihypermetric spaces. I and III], investigates the geometric constant $M(X)$ and its relationship to the metric properties of $X$ and the functional-analytic properties of a certain subspace of $mathcal{M}(X)$ when equipped with a natural semi-inner product. Using the work of the earlier paper, this paper explores measures which attain the supremum defining $M(X)$, sequences of measures which approximate the supremum when the supremum is not attained and conditions implying or equivalent to the finiteness of $M(X)$.
Let $(X, d)$ be a compact metric space and let $mathcal{M}(X)$ denote the space of all finite signed Borel measures on $X$. Define $I colon mathcal{M}(X) to R$ by [ I(mu) = int_X int_X d(x,y) dmu(x) dmu(y), ] and set $M(X) = sup I(mu)$, where $mu$ ra nges over the collection of signed measures in $mathcal{M}(X)$ of total mass 1. This paper, with two earlier papers [Peter Nickolas and Reinhard Wolf, Distance geometry in quasihypermetric spaces. I and II], investigates the geometric constant $M(X)$ and its relationship to the metric properties of $X$ and the functional-analytic properties of a certain subspace of $mathcal{M}(X)$ when equipped with a natural semi-inner product. Specifically, this paper explores links between the properties of $M(X)$ and metric embeddings of $X$, and the properties of $M(X)$ when $X$ is a finite metric space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا