ترغب بنشر مسار تعليمي؟ اضغط هنا

Alkali metals in white dwarf atmospheres as tracers of ancient planetary crusts

290   0   0.0 ( 0 )
 نشر من قبل Mark Hollands
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

White dwarfs that accrete the debris of tidally disrupted asteroids provide the opportunity to measure the bulk composition of the building blocks, or fragments, of exoplanets. This technique has established a diversity in compositions comparable to what is observed in the solar system, suggesting that the formation of rocky planets is a generic process. Whereas the relative abundances of lithophile and siderophile elements within the planetary debris can be used to investigate whether exoplanets undergo differentiation, the composition studies carried out so far lack unambiguous tracers of planetary crusts. Here we report the detection of lithium in the atmospheres of four cool (<5,000 K) and old (cooling ages 5-10 Gyr) metal-polluted white dwarfs, where one also displays photospheric potassium. The relative abundances of these two elements with respect to sodium and calcium strongly suggest that all four white dwarfs have accreted fragments of planetary crusts. We detect an infrared excess in one of the systems, indicating that accretion from a circumstellar debris disk is on-going. The main-sequence progenitor mass of this star was $4.8pm0.2 M_odot$, demonstrating that rocky, differentiated planets may form around short-lived B-type stars.

قيم البحث

اقرأ أيضاً

WD J204713.76-125908.9 is a new addition to the small class of white dwarfs with helium-dominated photospheres that exhibit strong Balmer absorption lines and atmospheric metal pollution. The exceptional abundances of hydrogen observed in these stars may be the result of accretion of water-rich rocky bodies. We obtained far-ultraviolet and optical spectroscopy of WD J204713.76-125908.9 using the Cosmic Origin Spectrograph on-board the Hubble Space Telescope and X-shooter on the Very Large Telescope, and identify photospheric absorption lines of nine metals: C, O, Mg, Si, P, S, Ca, Fe and Ni. The abundance ratios are consistent with the steady state accretion of exo-planetesimal debris rich in the volatile elements carbon and oxygen, and the transitional element sulphur, by factors of seventeen, two, and four respectively compared to bulk Earth. The parent body has a composition akin to Solar System carbonaceous chondrites, and the inferred minimum mass, $1.6 times 10^{20}$ g, is comparable to an asteroid 23 km in radius. We model the composition of the disrupted parent body, finding from our simulations a median water mass fraction of eight per cent.
WD 0145+234 is a white dwarf that is accreting metals from a circumstellar disc of planetary material. It has exhibited a substantial and sustained increase in 3-5 micron flux since 2018. Follow-up Spitzer photometry reveals that emission from the di sc had begun to decrease by late 2019. Stochastic brightening events superimposed on the decline in brightness suggest the liberation of dust during collisional evolution of the circumstellar solids. A simple model is used to show that the observations are indeed consistent with ongoing collisions. Rare emission lines from circumstellar gas have been detected at this system, supporting the emerging picture of white dwarf debris discs as sites of collisional gas and dust production.
84 - Colin P. Johnstone 2021
Interactions between the winds of stars and the magnetospheres and atmospheres of planets involve many processes, including the acceleration of particles, heating of upper atmospheres, and a diverse range of atmospheric loss processes. Winds remove a ngular momentum from their host stars causing rotational spin-down and a decay in magnetic activity, which protects atmospheres from erosion. While wind interactions are strongly influenced by the X-ray and ultraviolet activity of the star and the chemical composition of the atmosphere, the role of planetary magnetic fields is unclear. In this chapter, I review our knowledge of the properties and evolution of stellar activity and winds and discuss the influences of these processes on the long term evolution of planetary atmospheres. I do not consider the large number of important processes taking place at the surfaces of planets that cause exchanges between the atmosphere and the planets interior.
The atmospheres of between one quarter and one half of observed single white dwarfs in the Milky Way contain heavy element pollution from planetary debris. The pollution observed in white dwarfs in binary star systems is, however, less clear, because companion star winds can generate a stream of matter which is accreted by the white dwarf. Here we (i) discuss the necessity or lack thereof of a major planet in order to pollute a white dwarf with orbiting minor planets in both single and binary systems, and (ii) determine the critical binary separation beyond which the accretion source is from a planetary system. We hence obtain user-friendly functions relating this distance to the masses and radii of both stars, the companion wind, and the accretion rate onto the white dwarf, for a wide variety of published accretion prescriptions. We find that for the majority of white dwarfs in known binaries, if pollution is detected, then that pollution should originate from planetary material.
We present follow-up photometry and spectroscopy of ZTF J0328$-$1219 strengthening its status as a white dwarf exhibiting transiting planetary debris. Using TESS and Zwicky Transient Facility photometry, along with follow-up high speed photometry fro m various observatories, we find evidence for two significant periods of variability at 9.937 and 11.2 hr. We interpret these as most likely the orbital periods of different debris clumps. Changes in the detailed dip structures within the light curves are observed on nightly, weekly, and monthly timescales, reminiscent of the dynamic behavior observed in the first white dwarf discovered to harbor a disintegrating asteroid, WD 1145+017. We fit previously published spectroscopy along with broadband photometry to obtain new atmospheric parameters for the white dwarf, with $M_{star} = 0.731 pm 0.023,M_{odot}$, $T_{mathrm{eff}} = 7630 pm 140,$K, and $mathrm{[Ca/He]}=-9.55pm0.12$. With new high-resolution spectroscopy, we detect prominent and narrow Na D absorption features likely of circumstellar origin, with velocities $21.4pm1.0$ km s$^{-1}$ blue-shifted relative to atmospheric lines. We attribute the periodically modulated photometric signal to dusty effluents from small orbiting bodies such as asteroids or comets, but are unable to identify the most likely material that is being sublimated, or otherwise ejected, as the environmental temperatures range from roughly 400K to 600K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا