ترغب بنشر مسار تعليمي؟ اضغط هنا

On the correlation coefficient T(E_e) of the neutron beta decay, caused by the correlation structure invariant under discrete P, C and T symmetries

188   0   0.0 ( 0 )
 نشر من قبل A. N. Ivanov
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the correlation coefficient T(E_e), which was introduced by Ebel and Feldman (Nucl. Phys. 4, 213 (1957)). The correlation coefficient T(E_e) is induced by the correlations of the neutron spin with the antineutrino 3-momentum and the electron spin with the electron 3-momentum. Such a correlation structure is invariant under discrete P, C and T symmetries. The correlation coefficient T(E_e), calculated to leading order in the large nucleon mass m_N expansion, is equal to T(E_e) = - 2 g_A(1 + g_A)/(1 + 3 g^2_A) = - B_0, i.e. of order |T(E_e)| ~ 1, where $g_A$ is the axial coupling constant. Within the Standard Model (SM) we describe the correlation coefficient $T(E_e)$ at the level of 10^{-3} by taking into the radiative corrections of order O(alpha/pi) or the outer model-independent radiative corrections, where alpha is the fine-structure constant, and the corrections of order O(E_e/m_N), caused by weak magnetism and proton recoil. We calculate also the contributions of interactions beyond the SM, including the contributions of the second class currents.

قيم البحث

اقرأ أيضاً

In the standard effective V - A theory of low-energy weak interactions (i.e. in the Standard Model (SM)) we analyze the structure of the correlation coefficients S(E_e) and U(E_e), where E_e is the electron energy. These correlation coefficients were introduced to the electron-energy and angular distribution of the neutron beta decay by Ebel and Feldman ( Nucl. Phys. 4, 213 (1957)) in addition to the set of correlation coefficients proposed by Jackson et al. (Phys. Rev. 106, 517 (1957)). The correlation coefficients $S(E_e)$ and $U(E_e)$ are induced by simultaneous correlations of the neutron and electron spins and electron and antineutrino 3-momenta. These correlation structures do no violate discrete P, C and T symmetries. We analyze the contributions of the radiative corrections of order O(alpha/pi), taken to leading order in the large nucleon mass m_N expansion, and corrections of order O(E_e/m_N), caused by weak magnetism and proton recoil. In addition to the obtained SM corrections we calculate the contributions of interactions beyond the SM (BSM contributions) in terms of the phenomenological coupling constants of BSM interactions by Jackson et al. (Phys. Rev. 106, 517 (1957)) and the second class currents by Weinberg (Phys. Rev. 112, 1375 (1958)).
We calculate the contributions of weak magnetism and proton recoil of order O(E^2_e/m^2_N)~10^{-5}, i.e. to next-to-next-to-leading order in the large nucleon mass expansion, to the neutron lifetime and correlation coefficients of the neutron beta de cay, where E_e and m_N are the electron energy and the nucleon mass, respectively. We analyze the electron-energy and angular distribution for the neutron beta decay with a polarized neutron, a polarized electron and an unpolarized proton. Together with Wilkinsons corrections (Nucl. Phys. A 377, 474 (1982) and radiative corrections of order O(alpha E_e/m_N) ~ 10^{-5} (Phys. Rev. D 99, 093006 (2019)), calculated as next--to--leading order corrections in the large nucleon mass $m_N$ expansion to Sirlins corrections of order O(alpha/pi) (Phys. Rev. 164, 1767 (1967)), the corrections of order O(E^2_e/m^2_N) ~ 10^{-5} provide an improved level of precision of the theoretical background of the neutron beta decay, calculated in the Standard Model, for experimental searches of contributions of interactions beyond the Standard Model.
Testing deviations from the $Lambda$CDM model using the Cosmic Microwave Background (CMB) power spectra requires a pristine understanding of instrumental systematics. In this work we discuss the properties of a new observable ${cal R}^{TE}_{ell}$, th e correlation coefficient of temperature and E modes. We find that this observable is mostly unaffected by systematics introducing multiplicative biases such as errors in calibration, polarisation efficiency, beam and transfer function measurements. We discuss the dependency of this observable on the cosmological model and derive its statistical properties. We then compute the T-E correlation coefficients of Planck legacy data and compare them with expectations from the Planck best-fit $Lambda$CDM and foreground model.
Background: Time-reversal-invariance violation, or equivalently CP violation, may explain the observed cosmological baryon asymmetry as well as signal physics beyond the Standard Model. In the decay of polarized neutrons, the triple correlation D<J_{ n}>cdot(p_{e}timesp_{ u}) is a parity-even, time-reversal- odd observable that is uniquely sensitive to the relative phase of the axial-vector amplitude with respect to the vector amplitude. The triple correlation is also sensitive to possible contributions from scalar and tensor amplitudes. Final-state effects also contribute to D at the level of 1e-5 and can be calculated with a precision of 1% or better. Purpose: We have improved the sensitivity to T-odd, P-even interactions in nuclear beta decay. Methods: We measured proton-electron coincidences from decays of longitudinally polarized neutrons with a highly symmetric detector array designed to cancel the time-reversal-even, parity-odd Standard-Model contributions to polarized neutron decay. Over 300 million proton-electron coincidence events were used to extract D and study systematic effects in a blind analysis. Results: We find D = [-0.94pm1.89(stat)pm0.97(sys)]e-4. Conclusions: This is the most sensitive measurement of D in nuclear beta decay. Our result can be interpreted as a measurement of the phase of the ratio of the axial-vector and vector coupling constants (CA/CV= |{lambda}|exp(i{phi}_AV)) with {phi}_AV = 180.012{deg} pm0.028{deg} (68% confidence level) or to constrain time-reversal violating scalar and tensor interactions that arise in certain extensions to the Standard Model such as leptoquarks. This paper presents details of the experiment, analysis, and systematic- error corrections.
We describe an apparatus used to measure the electron-antineutrino angular correlation coefficient in free neutron decay. The apparatus employs a novel measurement technique in which the angular correlation is converted into a proton time-of-flight a symmetry that is counted directly, avoiding the need for proton spectroscopy. Details of the method, apparatus, detectors, data acquisition, and data reduction scheme are presented, along with a discussion of the important systematic effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا