ترغب بنشر مسار تعليمي؟ اضغط هنا

Momentum distribution function and short-range correlations of the warm dense electron gas -- ab initio quantum Monte Carlo results

186   0   0.0 ( 0 )
 نشر من قبل Michael Bonitz
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a classical plasma the momentum distribution, $n(k)$, decays exponentially, for large $k$, and the same is observed for an ideal Fermi gas. However, when quantum and correlation effects are relevant simultaneously, an algebraic decay, $n_infty(k)sim k^{-8}$ has been predicted. This is of relevance for cross sections and threshold processes in dense plasmas that depend on the number of energetic particles. Here we present extensive textit{ab initio} results for the momentum distribution of the nonideal uniform electron gas at warm dense matter conditions. Our results are based on first principle fermionic path integral Monte Carlo (CPIMC) simulations and clearly confirm the $k^{-8}$ asymptotic. This asymptotic behavior is directly linked to short-range correlations which are analyzed via the on-top pair distribution function (on-top PDF), i.e. the PDF of electrons with opposite spin. We present extensive results for the density and temperature dependence of the on-top PDF and for the momentum distribution in the entire momentum range.



قيم البحث

اقرأ أيضاً

The accurate description of electrons at extreme density and temperature is of paramount importance for, e.g., the understanding of astrophysical objects and inertial confinement fusion. In this context, the dynamic structure factor $S(mathbf{q},omeg a)$ constitutes a key quantity as it is directly measured in X-ray Thomson (XRTS) scattering experiments and governs transport properties like the dynamic conductivity. In this work, we present the first textit{ab initio} results for $S(mathbf{q},omega)$ by carrying out extensive path integral Monte Carlo simulations and developing a new method for the required analytic continuation, which is based on the stochastic sampling of the dynamic local field correction $G(mathbf{q},omega)$. In addition, we find that the so-called static approximation constitutes a promising opportunity to obtain high-quality data for $S(mathbf{q},omega)$ over substantial parts of the warm dense matter regime.
Warm dense matter (WDM) -- an exotic state of highly compressed matter -- has attracted high interest in recent years in astrophysics and for dense laboratory systems. At the same time, this state is extremely difficult to treat theoretically. This i s due to the simultaneous appearance of quantum degeneracy, Coulomb correlations and thermal effects, as well as the overlap of plasma and condensed phases. Recent breakthroughs are due to the successful application of density functional theory (DFT) methods which, however, often lack the necessary accuracy and predictive capability for WDM applications. The situation has changed with the availability of the first textit{ab initio} data for the exchange-correlation free energy of the warm dense uniform electron gas (UEG) that were obtained by quantum Monte Carlo (QMC) simulations, for recent reviews, see Dornheim textit{et al.}, Phys. Plasmas textbf{24}, 056303 (2017) and Phys. Rep. textbf{744}, 1-86 (2018). In the present article we review recent further progress in QMC simulations of the warm dense UEG: namely, textit{ab initio} results for the static local field correction $G(q)$ and for the dynamic structure factor $S(q,omega)$. These data are of key relevance for the comparison with x-ray scattering experiments at free electron laser facilities and for the improvement of theoretical models. In the second part of this paper we discuss simulations of WDM out of equilibrium. The theoretical approaches include Born-Oppenheimer molecular dynamics, quantum kinetic theory, time-dependent DFT and hydrodynamics. Here we analyze strengths and limitations of these methods and argue that progress in WDM simulations will require a suitable combination of all methods. A particular role might be played by quantum hydrodynamics, and we concentrate on problems, recent progress, and possible improvements of this method.
The emph{ab initio} path integral Monte Carlo (PIMC) approach is one of the most successful methods in quantum many-body theory. A particular strength of this method is its straightforward access to imaginary-time correlation functions (ITCF). For ex ample, the well-known density-density ITCF $F(mathbf{q},tau)$ allows one to estimate the linear response of a given system for all wave vectors $mathbf{q}$ from a single simulation of the unperturbed system. Moreover, it constitutes the basis for the reconstruction of the dynamic structure factor $S(mathbf{q},omega)$ -- a key quantity in state-of-the-art scattering experiments. In this work, we present analogous relations between the nonlinear density response in quadratic and cubic order of the perturbation strength and generalized ITCFs measuring correlations between up to four imaginary-time arguments. As a practical demonstration of our new approach, we carry out simulations of the warm dense electron gas and find excellent agreement with previous PIMC results that had been obtained with substantially larger computational effort. In addition, we give a relation between a cubic ITCF and the triple dynamic structure factor $S(mathbf{q}_1,omega_1;mathbf{q}_2,omega_2)$, which evokes the enticing possibility to study dynamic three-body effects on an emph{ab initio} level.
We present extensive new textit{ab intio} path integral Monte Carlo results for the momentum distribution function $n(mathbf{k})$ of the uniform electron gas (UEG) in the warm dense matter (WDM) regime over a broad range of densities and temperatures . This allows us to study the nontrivial exchange--correlation induced increase of low-momentum states around the Fermi temperature, and to investigate its connection to the related lowering of the kinetic energy compared to the ideal Fermi gas. In addition, we investigate the impact of quantum statistics on both $n(mathbf{k})$ and the off-diagonal density matrix in coordinate space, and find that it cannot be neglected even in the strongly coupled electron liquid regime. Our results were derived without any nodal constraints, and thus constitute a benchmark for other methods and approximations.
The uniform electron gas (UEG) at finite temperature is of key relevance for many applications in dense plasmas, warm dense matter, laser excited solids and much more. Accurate thermodynamic data for the UEG are an essential ingredient for many-body theories, in particular, density functional theory. Recently, first-principle restricted path integral Monte Carlo results became available which, however, due to the fermion sign problem, had to be restricted to moderate degeneracy, i.e. low to moderate densities with $r_s={bar r}/a_B gtrsim 1$. Here we present novel first-principle configuration PIMC results for electrons for $r_s leq 1$. We also present quantum statistical data within the $e^4$-approximation that are in good agreement with the simulations at small to moderate $r_s$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا