ترغب بنشر مسار تعليمي؟ اضغط هنا

AstroSat observations of eclipsing high mass X-ray binary pulsar OAO 1657-415

164   0   0.0 ( 0 )
 نشر من قبل Gaurava K. Jaisawal
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results obtained from analysis of two AstroSat observations of the high mass X-ray binary pulsar OAO 1657-415. The observations covered 0.681-0.818 and 0.808-0.968 phases of the $sim$10.4 day orbital period of the system, in March and July 2019, respectively. Despite being outside the eclipsing regime, the power density spectrum from the first observation lacks any signature of pulsation or quasi-periodic oscillations. However, during July observation, X-ray pulsations at a period of 37.0375 s were clearly detected in the light curves. The pulse profiles from the second observation consist of a broad single peak with a dip-like structure in the middle across the observed energy range. We explored evolution of the pulse profile in narrow time and energy segments. We detected pulsations in the light curves obtained from 0.808--0.92 orbital phase range, which is absent in the remaining part of the observation. The spectrum of OAO 1657-415 can be described by an absorbed power-law model along with an iron fluorescent emission line and a blackbody component for out-of-eclipse phase of the observation. Our findings are discussed in the frame of stellar wind accretion and accretion wake at late orbital phases of the binary.



قيم البحث

اقرأ أيضاً

We have measured the precise position of the 38-s eclipsing X-ray pulsar OAO 1657-415 with the Chandra X-Ray Observatory: RA = 17h00m48.90s, Dec = -41d39m21.6s, equninox J2000, error radius = 0.5 arcsec. Based on the previously measured pulsar mass f unction and X-ray eclipse duration, this 10.4-d high-mass X-ray binary is believed to contain a B supergiant companion. Deep optical imaging of the field did not detect any stars at the Chandra source position, setting a limit of V>23. However, near-IR imaging revealed a relatively bright star (J=14.1, H=11.9, K_s=10.7) coincident with the Chandra position, and we identify this star as the IR counterpart of OAO 1657-415. The IR colors and magnitudes and the optical non-detections for this star are all consistent with a highly reddened B supergiant (A_V= 20.4 +/- 1.3) at a distance of 6.4 +/- 1.5 kpc. This implies an X-ray luminosity of 3e36 erg/s (2-10 keV). IR spectroscopy can verify the spectral type of the companion and measure its radial velocity curve, yielding a neutron star mass measurement.
173 - J. Barnstedt 2008
The Galactic Plane Scan (GPS) was one of the core observation programmes of the INTEGRAL satellite. The highly variable accreting pulsar OAO 1657-415 was frequently observed within the GPS. We investigate the spectral and timing properties of OAO 165 7-415 and their variability on short and long time scales in the energy range 6-160 keV. During the time covered by the INTEGRAL observations, the pulse period evolution shows an initial spin-down, which is followed by an equally strong spin-up. In combining our results with historical pulse period measurements (correcting them for orbital variation) and with stretches of continuous observations by BATSE, we find that the long-term period evolution is characterised by a long-term spin-up overlayed by sets of relative spin-down/spin-up episodes, which appear to repeat quasi-periodically on a 4.8 yr time scale. We measure an updated local ephemeris and confirm the previously determined orbital period with an improved accuracy. The spectra clearly change with pulse phase. The spectrum measured during the main peak of the pulse profile is particularly hard. We do not find any evidence of a cyclotron line, wether in the phase-averaged spectrum or in phase-resolved spectra.
OAO 1657-415 is an accreting pulsar in an eclipsing binary system. We analyzed the INTEGRAL core program observations of this object and obtained the eclipse light curve in the soft gamma-ray band between 15 and 40 keV. We note that the gamma rays fr om the pulsar allow to probe the density profile of the outer layers of the B supergiant companion. We find that the density profile of the outer layer can be described by a power law with the index $alpha = 8.5$. We also note that the fit hints toward smaller inclinations of the system within the allowed range 60-90 degrees.
We have analyzed 3 observations of the High Mass X-ray Binary A0535+26 performed by the Rossi X-ray Timing Explorer (RXTE) 3, 5, and 6 months after the last outburst in 2011 February. We detect pulsations only in the second observation. The 3-20 keV spectra can be fit equally well with either an absorbed power law or absorbed thermal bremsstrahlung model. Re-analysis of 2 earlier RXTE observations made 4 years after the 1994 outburst, original BeppoSAX observations 2 years later, re-analysis of 4 EXOSAT observations made 2 years after the last 1984 outburst, and a recent XMM-Newton observation in 2012 reveal a stacked, quiescent flux level decreasing from ~2 to <1 x 10^{-11} ergs/cm2/s over 6.5 years after outburst. Detection of pulsations during half of the quiescent observations would imply that accretion onto the magnetic poles of the neutron star continues despite the fact that the circumstellar disk may no longer be present. The accretion could come from material built-up at the corotation radius or from an isotropic stellar wind.
IGR J16493-4348 is an eclipsing supergiant high-mass X-ray binary (sgHMXB), where accretion onto the compact object occurs via the radially outflowing stellar wind of its early B-type companion. We present an analysis of the systems X-ray variability and periodic modulation using pointed observations (2.5-25 keV) and Galactic bulge scans (2-10 keV) from the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA), along with Swift Burst Alert Telescope (BAT) 70-month snapshot (14-195 keV) and transient monitor (15-50 keV) observations. The orbital eclipse profiles in the PCA bulge scans and BAT light curves are modeled using asymmetric and symmetric step and ramp functions. We obtain an improved orbital period measurement of 6.7828 $pm$ 0.0004 days from an observed minus calculated (O-C) analysis of mid-eclipse times derived from the BAT transient monitor and PCA scan data. No evidence is found for the presence of a strong photoionization or accretion wake. We refine the superorbital period to 20.067 $pm$ 0.009 days from the discrete Fourier transform (DFT) of the BAT transient monitor light curve. A pulse period of 1093.1036 $pm$ 0.0004 s is measured from a pulsar timing analysis using pointed PCA observations spanning $sim$1.4 binary orbits. We present pulse times of arrival (ToAs), circular and eccentric timing models, and calculations of the systems Keplerian binary orbital parameters. We derive an X-ray mass function of $f_{x}(M)$ $=$ 13.2$^{+2.4}_{-2.5}$ $M_{odot}$ and find a spectral type of B0.5 Ia for the supergiant companion through constraints on the mass and radius of the donor. Measurements of the eclipse half-angle and additional parameters describing the system geometry are provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا