ﻻ يوجد ملخص باللغة العربية
High-Level Synthesis (HLS) frameworks allow to easily specify a large number of variants of the same hardware design by only acting on optimization directives. Nonetheless, the hardware synthesis of implementations for all possible combinations of directive values is impractical even for simple designs. Addressing this shortcoming, many HLS Design Space Exploration (DSE) strategies have been proposed to devise directive settings leading to high-quality implementations while limiting the number of synthesis runs. All these works require considerable efforts to validate the proposed strategies and/or to build the knowledge base employed to tune abstract models, as both tasks mandate the syntheses of large collections of implementations. Currently, such data gathering is performed ad-hoc, a) leading to a lack of standardization, hampering comparisons between DSE alternatives, and b) posing a very high burden to researchers willing to develop novel DSE strategies. Against this backdrop, we here introduce DB4HLS, a database of exhaustive HLS explorations comprising more than 100000 design points collected over 4 years of synthesis time. The open structure of DB4HLS allows the incremental integration of new DSEs, which can be easily defined with a dedicated domain-specific language. We think that of our database, available at https://www.db4hls.inf.usi.ch/, will be a valuable tool for the research community investigating automated strategies for the optimization of HLS-based hardware designs.
In this work, we present a new approach to high level synthesis (HLS), where high level functions are first mapped to an architectural template, before hardware synthesis is performed. As FPGA platforms are especially suitable for implementing stream
The globalization of the electronics supply chain is requiring effective methods to thwart reverse engineering and IP theft. Logic locking is a promising solution but there are still several open concerns. Even when applied at high level of abstracti
Machine learning based singing voice models require large datasets and lengthy training times. In this work we present a lightweight architecture, based on the Differentiable Digital Signal Processing (DDSP) library, that is able to output song-like
Carbon nanotube field-effect transistors (CNFET) emerge as a promising alternative to CMOS transistors for the much higher speed and energy efficiency, which makes the technology particularly suitable for building the energy-hungry last level cache (
This paper gives an overview of our ongoing work on the design space exploration of efficient deep neural networks (DNNs). Specifically, we cover two aspects: (1) static architecture design efficiency and (2) dynamic model execution efficiency. For s