ﻻ يوجد ملخص باللغة العربية
We report on temperature-dependent soft X-ray absorption spectroscopy (XAS) measurements utilizing linearly polarized synchrotron radiation to probe magnetic phase transitions in iron-rich Fe1+yTe. X-ray magnetic linear dichroism (XMLD) signals, which sense magnetic ordering processes at surfaces, start to increase monotonically below the Neel temperature TN = 57 K. This increase is due to a progressive bicollinear antiferromagnetic (AFM) alignment of Fe spins of the monoclinic Fe1+yTe parent phase. This AFM alignment was achieved by a [100]-oriented biasing field favoring a single-domain state during cooling across TN. Our specific heat and magnetization measurements confirm the bulk character of this AFM phase transition. On longer time scales, however, we observe that the field-biased AFM state is highly unstable even at the lowest temperature of T = 3 K. After switching off the biasing field, the XMLD signal decays exponentially with a time constant {tau} = 1506 s. The initial XMLD signal is restored only upon repeating a cycle consisting of heating and field-cooling through TN. We explain the time effect by a gradual formation of a multi-domain state with 90 deg rotated AFM domains, promoted by structural disorder, facilitating the motion of twin-domains. Significant disorder in our Fe1+yTe sample is evident from our X-ray diffraction and specific heat data. The stability of magnetic phases in Fe-chalcogenides is an important material property, since the Fe(Te1-xSex) phase diagram shows magnetism intimately connected with superconductivity.
We report directional point-contact spectroscopy data on the novel Bi2Te3/Fe1+yTe interfacial superconductor for a Bi2Te3 thickness of 9 quintuple layers, bonded by van der Waals epitaxy to a Fe1+yTe film at an atomically sharp interface. Our data sh
CeAu2Si2 is a newly discovered pressure-induced heavy fermion superconductor which shows very unusual interplay between superconductivity and magnetism under pressure. Here we compare the results of high-pressure measurements on single crystalline Ce
The recent discovery of the interfacial superconductivity (SC) of the Bi2Te3/Fe1+yTe heterostructure has attracted extensive studies due to its potential as a novel platform for trapping and controlling Majorana fermions. Here we present studies of a
We investigate the hydrostatic pressure dependence of interfacial superconductivity occurring at the atomically sharp interface between two non-superconducting materials: the topological insulator (TI) Bi2Te3 and the parent compound Fe1+yTe of the ch
The quest to understand correlated electronic systems has pushed the frontiers of experimental measurements toward the development of new experimental techniques and methodologies. Here we use a novel home-built uniaxial-strain device integrated into