ﻻ يوجد ملخص باللغة العربية
We present Knowledge Enhanced Multimodal BART (KM-BART), which is a Transformer-based sequence-to-sequence model capable of reasoning about commonsense knowledge from multimodal inputs of images and texts. We adapt the generative BART architecture to a multimodal model with visual and textual inputs. We further develop novel pretraining tasks to improve the model performance on the Visual Commonsense Generation (VCG) task. In particular, our pretraining task of Knowledge-based Commonsense Generation (KCG) boosts model performance on the VCG task by leveraging commonsense knowledge from a large language model pretrained on external commonsense knowledge graphs. To the best of our knowledge, we are the first to propose a dedicated task for improving model performance on the VCG task. Experimental results show that our model reaches state-of-the-art performance on the VCG task by applying these novel pretraining tasks.
Commonsense generation aims at generating plausible everyday scenario description based on a set of provided concepts. Digging the relationship of concepts from scratch is non-trivial, therefore, we retrieve prototypes from external knowledge to assi
Story generation, namely generating a reasonable story from a leading context, is an important but challenging task. In spite of the success in modeling fluency and local coherence, existing neural language generation models (e.g., GPT-2) still suffe
Ensemble learning is a statistical paradigm built on the premise that many weak learners can perform exceptionally well when deployed collectively. The BART method of Chipman et al. (2010) is a prominent example of Bayesian ensemble learning, where e
Commonsense generation is a challenging task of generating a plausible sentence describing an everyday scenario using provided concepts. Its requirement of reasoning over commonsense knowledge and compositional generalization ability even puzzles str
There is a recent interest in investigating few-shot NER, where the low-resource target domain has different label sets compared with a resource-rich source domain. Existing methods use a similarity-based metric. However, they cannot make full use of