ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological inference from emulator based halo model I: Validation tests with HSC and SDSS mock catalogs

312   0   0.0 ( 0 )
 نشر من قبل Masahiro Takada
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present validation tests of emulator-based halo model method for cosmological parameter inference, assuming hypothetical measurements of the projected correlation function of galaxies, $w_{rm p}(R)$, and the galaxy-galaxy weak lensing, $Delta!Sigma(R)$, from the spectroscopic SDSS galaxies and the Hyper Suprime-Cam Year1 (HSC-Y1) galaxies. To do this, we use textsc{Dark Emulator} developed in Nishimichi et al. based on an ensemble of $N$-body simulations, which is an emulation package enabling a fast, accurate computation of halo clustering quantities for flat-geometry $w$CDM cosmologies. Adopting the halo occupation distribution, the emulator allows us to obtain model predictions of $Delta!Sigma$ and $w_{rm p}$ for the SDSS-like galaxies at a few CPU seconds for an input set of parameters. We present performance and validation of the method by carrying out Markov Chain Monte Carlo analyses of the mock signals measured from a variety of mock catalogs that mimic the SDSS and HSC-Y1 galaxies. We show that the halo model method can recover the underlying true cosmological parameters to within the 68% credible interval, except for the mocks including the assembly bias effect (although we consider the unrealistically-large amplitude of assembly bias effect). Even for the assembly bias mock, we demonstrate that the cosmological parameters can be recovered {it if} the analysis is restricted to scales $Rgtrsim 10~h^{-1}{rm Mpc}$. We also show that, by using a single population of source galaxies to infer the relative strengths of $Delta!Sigma$ for multiple lens samples at different redshifts, the joint probes method allows for self-calibration of photometric redshift errors and multiplicative shear bias. Thus we conclude that the emulator-based halo model method can be safely applied to the HSC-Y1 dataset, achieving a precision of $sigma(S_8)simeq 0.04$.

قيم البحث

اقرأ أيضاً

We assess the performance of a perturbation theory inspired method for inferring cosmological parameters from the joint measurements of galaxy-galaxy weak lensing ($DeltaSigma$) and the projected galaxy clustering ($w_{rm p}$). To do this, we use a w ide variety of mock galaxy catalogs constructed based on a large set of $N$-body simulations that mimic the Subaru HSC-Y1 and SDSS galaxies, and apply the method to the mock signals to address whether to recover the underlying true cosmological parameters in the mocks. We find that, as long as the appropriate scale cuts, $12$ and $8~h^{-1}{rm Mpc}$ for $DeltaSigma$ and $w_{rm p}$ respectively, are adopted, a minimal-bias model using the linear bias parameter $b_1$ alone and the nonlinear matter power spectrum can recover the true cosmological parameters (here focused on $Omega_{rm m}$ and $sigma_8$) to within the 68% credible interval, for all the mocks we study including one in which an assembly bias effect is implemented. This is as expected if physical processes inherent in galaxy formation/evolution are confined to local, small scales below the scale cut, and thus implies that real-space observables have an advantage in filtering out the impact of small-scale nonlinear effects in parameter estimation, compared to their Fourier-space counterparts. In addition, we find that a theoretical template including the higher-order bias contributions such as nonlinear bias parameter $(b_2)$ does not improve the cosmological constraints, but rather leads to a larger parameter bias compared to the baseline $b_1$-method.
LCDM cosmological models with Early Dark Energy (EDE) have been proposed to resolve tensions between the Hubble constant H0 = 100h km/s/Mpc measured locally, giving h ~ 0.73, and H0 deduced from Planck cosmic microwave background (CMB) and other earl y universe measurements plus LCDM, giving h ~ 0.67. EDE models do this by adding a scalar field that temporarily adds dark energy equal to about 10% of the cosmological energy density at the end of the radiation-dominated era at redshift z ~ 3500. Here we compare linear and nonlinear predictions of a Planck-normalized LCDM model including EDE giving h = 0.728 with those of standard Planck-normalized LCDM with h = 0.678. We find that nonlinear evolution reduces the differences between power spectra of fluctuations at low redshifts. As a result, at z = 0 the halo mass functions on galactic scales are nearly the same, with differences only 1-2%. However, the differences dramatically increase at high redshifts. The EDE model predicts 50% more massive clusters at z = 1 and twice more galaxy-mass halos at z = 4. Even greater increases in abundances of galaxy-mass halos at higher redshifts may make it easier to reionize the universe with EDE. Predicted galaxy abundances and clustering will soon be tested by JWST observations. Positions of baryonic acoustic oscillations (BAOs) and correlation functions differ by about 2% between the models -- an effect that is not washed out by nonlinearities. Both standard LCDM and the EDE model studied here agree well with presently available acoustic-scale observations, but DESI and Euclid measurements will provide stringent new tests.
We utilise mock catalogues from high-accuracy cosmological $N$-body simulations to quantify shifts in the recovery of the acoustic scale that could potentially result from galaxy clustering bias. The relationship between galaxies and dark matter halo s presents a complicated source of systematic errors in modern redshift surveys, particularly when aiming to make cosmological measurements to sub-percent precision. Apart from a scalar, linear bias parameter accounting for the density contrast ratio between matter tracers and the true matter distribution, other types of galaxy bias, such as assembly and velocity biases, may also significantly alter clustering signals from small to large scales. We create mocks based on generalised halo occupation populations of 36 periodic boxes from the abacuscosmos release with. In a total volume of $48 , h^{-3} mathrm{Gpc}^3$, we test various biased models along with an unbiased base case. Two reconstruction methods are applied to galaxy samples and the apparent acoustic scale is derived by fitting the two-point correlation function multipoles. With respect to the baseline, we find a $0.3%$ shift in the line-of-sight acoustic scale for one variation in the satellite galaxy population, and we find an $0.7%$ shift for an extreme level of velocity bias of the central galaxies. All other bias models are consistent with zero shift at the $0.2%$ level after reconstruction. We note that the bias models explored are relatively large variations, producing sizeable and likely distinguishable changes in small-scale clustering, the modelling of which would further calibrate the BAO standard ruler.
We present a detailed study of the Galaxy Evolution Explorers photometric catalogs with special focus on the statistical properties of the All-sky and Medium Imaging Surveys. We introduce the concept of primaries to resolve the issue of multiple dete ctions and follow a geometric approach to define clean catalogs with well-understood selection functions. We cross-identify the GALEX sources (GR2+3) with Sloan Digital Sky Survey (DR6) observations, which indirectly provides an invaluable insight about the astrometric model of the UV sources and allows us to revise the band merging strategy. We derive the formal description of the GALEX footprints as well as their intersections with the SDSS coverage along with analytic calculations of their areal coverage. The crossmatch catalogs are made available for the public. We conclude by illustrating the implementation of typical selection criteria in SQL for catalog subsets geared toward statistical analyses, e.g., correlation and luminosity function studies.
We explore the possibility that matter bulk flows could generate the required vorticity in the electron-proton-photon plasma to source cosmic magnetic fields through the Harrison mechanism. We analyze the coupled set of perturbed Maxwell and Boltzman n equations for a plasma in which the matter and radiation components exhibit relative bulk motions at the background level. We find that, to first order in cosmological perturbations, bulk flows with velocities compatible with current Planck limits ($beta<8.5times 10^{-4}$ at $95%$ CL) could generate magnetic fields with an amplitude $10^{-21}$ G on 10 kpc comoving scales at the time of completed galaxy formation which could be sufficient to seed a galactic dynamo mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا