ترغب بنشر مسار تعليمي؟ اضغط هنا

Fuzzy Rate Analysis of Operators and its Applications in Linear Spaces

128   0   0.0 ( 0 )
 نشر من قبل Yijin Zhang
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, a new concept, the fuzzy rate of an operator in linear spaces is proposed for the very first time. Some properties and basic principles of it are studied. Fuzzy rate of an operator $B$ which is specific in a plane is discussed. As its application, a new fixed point existence theorem is proved.



قيم البحث

اقرأ أيضاً

In this paper we introduce and study semigroups of operators on spaces of fuzzy-number-valued functions, and various applications to fuzzy differential equations are presented. Starting from the space of fuzzy numbers, many new spaces sharing the sam e properties are introduced. We derive basic operator theory results on these spaces and new results in the theory of semigroups of linear operators on fuzzy-number kind spaces. The theory we develop is used to solve classical fuzzy systems of differential equations, including, for example, the fuzzy Cauchy problem and the fuzzy wave equation. These tools allow us to obtain explicit solutions to fuzzy initial value problems which bear explicit formulas similar to the crisp case, with some additional fuzzy terms which in the crisp case disappear. The semigroup method displays a clear advantage over other methods available in the literature (i.e., the level set method, the differential inclusions method and other fuzzification methods of the real-valued solution) in the sense that the solutions can be easily constructed, and that the method can be applied to a larger class of fuzzy differential equations that can be transformed into an abstract Cauchy problem.
101 - Akshay S. Rane 2021
We prove the Zabreikos lemma in 2-Banach spaces. As an application we shall prove a version of the closed graph theorem and open mapping theorem.
198 - Van Hung Le , 2009
The paper introduces fuzzy linguistic logic programming, which is a combination of fuzzy logic programming, introduced by P. Vojtas, and hedge algebras in order to facilitate the representation and reasoning on human knowledge expressed in natural la nguages. In fuzzy linguistic logic programming, truth values are linguistic ones, e.g., VeryTrue, VeryProbablyTrue, and LittleFalse, taken from a hedge algebra of a linguistic truth variable, and linguistic hedges (modifiers) can be used as unary connectives in formulae. This is motivated by the fact that humans reason mostly in terms of linguistic terms rather than in terms of numbers, and linguistic hedges are often used in natural languages to express different levels of emphasis. The paper presents: (i) the language of fuzzy linguistic logic programming; (ii) a declarative semantics in terms of Herbrand interpretations and models; (iii) a procedural semantics which directly manipulates linguistic terms to compute a lower bound to the truth value of a query, and proves its soundness; (iv) a fixpoint semantics of logic programs, and based on it, proves the completeness of the procedural semantics; (v) several applications of fuzzy linguistic logic programming; and (vi) an idea of implementing a system to execute fuzzy linguistic logic programs.
In this paper we prove that Neutrosophic Set (NS) is an extension of Intuitionistic Fuzzy Set (IFS) no matter if the sum of single-valued neutrosophic components is < 1, or > 1, or = 1. For the case when the sum of components is 1 (as in IFS), after applying the neutrosophic aggregation operators one gets a different result from that of applying the intuitionistic fuzzy operators, since the intuitionistic fuzzy operators ignore the indeterminacy, while the neutrosophic aggregation operators take into consideration the indeterminacy at the same level as truth-membership and falsehood-nonmembership are taken. NS is also more flexible and effective because it handles, besides independent components, also partially independent and partially dependent components, while IFS cannot deal with these. Since there are many types of indeterminacies in our world, we can construct different approaches to various neutrosophic concepts. Also, Regret Theory, Grey System Theory, and Three-Ways Decision are particular cases of Neutrosophication and of Neutrosophic Probability. We extended for the first time the Three-Ways Decision to n-Ways Decision, and the Spherical Fuzzy Set to n-HyperSpherical Fuzzy Set and to n-HyperSpherical Neutrosophic Set.
169 - Simon Hubmer , Ronny Ramlau 2020
We consider the decomposition of bounded linear operators on Hilbert spaces in terms of functions forming frames. Similar to the singular-value decomposition, the resulting frame decompositions encode information on the structure and ill-posedness of the problem and can be used as the basis for the design and implementation of efficient numerical solution methods. In contrast to the singular-value decomposition, the presented frame decompositions can be derived explicitly for a wide class of operators, in particular for those satisfying a certain stability condition. In order to show the usefulness of this approach, we consider different examples from the field of tomography.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا