ترغب بنشر مسار تعليمي؟ اضغط هنا

Elastocaloric signature of nematic fluctuations

77   0   0.0 ( 0 )
 نشر من قبل Matthias Ikeda
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The elastocaloric effect (ECE) is a thermodynamic quantity relating changes in entropy to changes in strain experienced by a material. As such, ECE measurements can provide valuable information about the entropy landscape proximate to strain-tuned phase transitions. For ordered states that break only point symmetries, bilinear coupling of the order parameter with strain implies that the ECE can also provide a window on fluctuations above the critical temperature, and hence, in principle, can also provide a thermodynamic measure of the associated susceptibility. To demonstrate this, we use the ECE to sensitively reveal the presence of nematic fluctuations in the archetypal Fe-based superconductor Ba(Fe$_{1-x}$Co$_{x}$)$_2$As$_2$. By performing these measurements simultaneously with elastoresistivity in a multimodal fashion, we are able to make a direct and unambiguous comparison of these closely related thermodynamic and transport properties, both of which are sensitive to nematic fluctuations. As a result, we have uncovered an unanticipated doping-dependence of the nemato-elastic coupling and of the magnitude of the scattering of low energy quasi-particles by nematic fluctuations -- while the former weakens, the latter increases dramatically with increasing doping.

قيم البحث

اقرأ أيضاً

We report the evolution of the electronic nematic susceptibility in FeSe via Raman scattering as a function of hydrostatic pressure up to 5.8 GPa where the superconducting transition temperature $T_{c}$ reaches its maximum. The critical nematic fluct uations observed at low pressure vanish above 1.6 GPa, indicating they play a marginal role in the four-fold enhancement of $T_{c}$ at higher pressures. The collapse of nematic fluctuations appears to be linked to a suppression of low energy electronic excitations which manifests itself by optical phonon anomalies at around 2 GPa, in agreement with lattice dynamical and electronic structure calculations using local density approximation combined with dynamical mean field theory. Our results reveal two different regimes of nematicity in the phase diagram of FeSe under pressure: a d-wave Pomeranchuk instability of the Fermi surface at low pressure and a magnetic driven orthorhombic distortion at higher pressure.
141 - Shan Wu , Yu Song , Yu He 2020
Interactions between nematic fluctuations, magnetic order and superconductivity are central to the physics of iron-based superconductors. Here we report on in-plane transverse acoustic phonons in hole-doped Sr$_{1-x}$Na$_x$Fe$_2$As$_2$ measured via i nelastic X-ray scattering, and extract both the nematic susceptibility and the nematic correlation length. By a self-contained method of analysis, for the underdoped ($x=0.36$) sample, which harbors a magnetically-ordered tetragonal phase, we find it hosts a short nematic correlation length $xi$ ~ 10 $AA$ and a large nematic susceptibility $chi_{rm nem}$. The optimal-doped ($x=0.55$) sample exhibits weaker phonon softening effects, indicative of both reduced $xi$ and $chi_{rm nem}$. Our results suggest short-range nematic fluctuations may favor superconductivity, placing emphasis on the nematic correlation length for understanding the iron-based superconductors.
We report Raman scattering measurement of charge nematic fluctuations in the tetragonal phase of BaFe$_2$As$_2$ and Sr(Fe$_{1-x}$Co$_x$)$_2$As$_2$ (x=0.04) single crystals. In both systems, the observed nematic fluctuations are found to exhibit diver gent Curie-Weiss like behavior with very similar characteristic temperature scales, indicating a universal tendency towards charge nematic order in 122 iron-based superconductors.
We employ polarization-resolved Raman spectroscopy to study multi-band stoichiometric superconductor CaKFe$_4$As$_4$. The B$_{2g}$ symmetry Raman response shows no signatures of Pomeranchuk-like electronic nematic fluctuations which is observed for m any other Fe-based superconductors. In the superconducting state, we identify three pair-breaking peaks at 13.8, 16.9 and 21 meV and full spectral weight suppression at low energies. The pair-breaking peak energies in Raman response are about 20% lower than twice the gap energies as measured by single-particle spectroscopy, implying a sub-dominant $d$-wave symmetry interaction. We analyze the superconductivity induced phonon self-energy effects and give an estimation of weak electron-phonon coupling constant $lambda^Gamma$=0.0015.
In contrast to bulk FeSe, which exhibits nematic order and low temperature superconductivity, atomic layers of FeSe reverse the situation, having high temperature superconductivity appearing alongside a suppression of nematic order. To investigate th is phenomenon, we study a minimal electronic model of FeSe, with interactions that enhance nematic fluctuations. This model is sign problem free, and is simulated using determinant quantum Monte Carlo (DQMC). We developed a DQMC algorithm with parallel tempering, which proves to be an efficient source of global updates and allows us to access the region of strong interactions. Over a wide range of intermediate couplings, we observe superconductivity with an extended s-wave order parameter, along with enhanced, but short ranged, $q=(0,0)$ ferro-orbital (nematic) order. These results are consistent with approximate weak coupling treatments that predict that nematic fluctuations lead to superconducting pairing. Surprisingly, in the parameter range under study, we do not observe nematic long range order. Instead, at stronger coupling an unusual insulating phase with $q=(pi,pi)$ antiferro-orbital order appears, which is missed by weak coupling approximations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا