ﻻ يوجد ملخص باللغة العربية
As quantum information processors grow in quantum bit (qubit) count and functionality, the control and measurement system becomes a limiting factor to large scale extensibility. To tackle this challenge and keep pace with rapidly evolving classical control requirements, full control stack access is essential to system level optimization. We design a modular FPGA (field-programmable gate array) based system called QubiC to control and measure a superconducting quantum processing unit. The system includes room temperature electronics hardware, FPGA gateware, and engineering software. A prototype hardware module is assembled from several commercial off-the-shelf evaluation boards and in-house developed circuit boards. Gateware and software are designed to implement basic qubit control and measurement protocols. System functionality and performance are demonstrated by performing qubit chip characterization, gate optimization, and randomized benchmarking sequences on a superconducting quantum processor operating at the Advanced Quantum Testbed at Lawrence Berkeley National Laboratory. The single-qubit and two-qubit process fidelities are measured to be 0.9980$pm$0.0001 and 0.948$pm$0.004 by randomized benchmarking. With fast circuit sequence loading capability, the QubiC performs randomized compiling experiments efficiently and improves the feasibility of executing more complex algorithms.
Qubit connectivity is an important property of a quantum processor, with an ideal processor having random access -- the ability of arbitrary qubit pairs to interact directly. Here, we implement a random access superconducting quantum information proc
We provide a rigorous analysis of the quantum optimal control problem in the setting of a linear combination $s(t)B+(1-s(t))C$ of two noncommuting Hamiltonians $B$ and $C$. This includes both quantum annealing (QA) and the quantum approximate optimiz
Solid-state qubits with transition frequencies in the microwave regime, such as superconducting qubits, are at the forefront of quantum information processing. However, high-fidelity, simultaneous control of superconducting qubits at even a moderate
Since the 1990s, there has been a dramatic interest in quantum communication. Free-space quantum communication is being developed to ultra-long distance quantum experiment, which requires higher electronics performance, such as time measurement preci
We present a highly frequency multiplexed readout for large-format superconducting detector arrays intended for use in the next generation of balloon-borne and space-based sub-millimeter and far-infrared missions. We will demonstrate this technology