ﻻ يوجد ملخص باللغة العربية
We introduce a microscopic model for collinear multiferroics capable to reproduce, as a consequence of magnetic frustration and easy-axis anisotropy, the so-called uudd (or antiphase) magnetic ordering observed in several type II multiferroic materials. The crucial role of lattice distortions in the multiferroic character of these materials is entered into the model via an indirect magnetoelectric coupling, mediated by elastic degrees of freedom through a pantograph mechanism. Long range dipolar interactions set electric dipoles in the antiferroelectric order. We investigate this model by means of extensive DMRG computations and complementary analytical methods. We show that a lattice dimerization induces a spontaneous Z2 ferrielectric bulk polarization, with a sharp switch off produced by a magnetic field above a critical value. The topological character of the magnetic excitations makes this mechanism robust.
We put forward the concept of a bulk Rashba effect emerging in a multiferroic material, such as an antiferromagnetic system with a polar crystal structure. According to symmetry considerations, while time-reversal and space-inversion symmetries are b
Electron scattering off an Anderson impurity immersed in the bulk of a 3D topological insulator is studied in the strong coupling regime, where the temperature $T$ is lower than the Kondo temperature $T_K$. The system displays either a self-screened
Translation domains differing in the phase but not in the orientation of the corresponding order parameter are resolved in two types of multiferroics. Hexagonal (h-) YMnO$_3$ is a split-order-parameter multiferroic in which commensurate ferroelectric
The archetypical 3D topological insulators Bi2Se3, Bi2Te3 and Sb2Te3 commonly exhibit high bulk conductivities, hindering the characterization of the surface state charge transport. The optimally doped topological insulators Bi2Te2Se and Bi2-xSbxTe2S
Anisotropy in electronic structures may ignite intriguing anisotropic optical responses, as has been well demonstrated in various systems including superconductors, semiconductors, and even topological Weyl semimetals. Meanwhile, it is well establish