ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological solitons and bulk polarization switch in collinear type II multiferroics

54   0   0.0 ( 0 )
 نشر من قبل Daniel Carlos Cabra
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a microscopic model for collinear multiferroics capable to reproduce, as a consequence of magnetic frustration and easy-axis anisotropy, the so-called uudd (or antiphase) magnetic ordering observed in several type II multiferroic materials. The crucial role of lattice distortions in the multiferroic character of these materials is entered into the model via an indirect magnetoelectric coupling, mediated by elastic degrees of freedom through a pantograph mechanism. Long range dipolar interactions set electric dipoles in the antiferroelectric order. We investigate this model by means of extensive DMRG computations and complementary analytical methods. We show that a lattice dimerization induces a spontaneous Z2 ferrielectric bulk polarization, with a sharp switch off produced by a magnetic field above a critical value. The topological character of the magnetic excitations makes this mechanism robust.



قيم البحث

اقرأ أيضاً

We put forward the concept of a bulk Rashba effect emerging in a multiferroic material, such as an antiferromagnetic system with a polar crystal structure. According to symmetry considerations, while time-reversal and space-inversion symmetries are b oth broken, there exist specific spin flipping operations that relate opposite spin sites in the magnetic crystal structure. As a consequence, at certain high-symmetry points in the momentum space, the magnetic point group allows the spin angular momentum to be locked to the linear momentum, a typical feature of the Rashba effect. In such a case, spin-splitting effects induced by spin-orbit coupling can arise, similar to what happens in non-magnetic Rashba systems. As a prototypical example, ab-initio calculations of antiferromagnetic BiCoO3 in the polar structure reveal that a large Rashba-like band- and spin- splitting occurs at the conduction band bottom, having a large weight from Bi-p orbital states. Moreover, we show that the spin texture of such a multiferroic can be modulated by applying a magnetic field. In particular, an external in-plane magnetic field is predicted not only to induce spin-canting, but also a distortion of the energy isocontours and a shift of the spin-vortex (centered on the high-symmetry point and characteristic of Rashba effect) along a direction perpendicular to the applied field.
Electron scattering off an Anderson impurity immersed in the bulk of a 3D topological insulator is studied in the strong coupling regime, where the temperature $T$ is lower than the Kondo temperature $T_K$. The system displays either a self-screened Kondo effect, or a Kondo effect with SO(3) or SO(4) dynamical symmetries. Low temperature Kondo scattering for systems with SO(3) symmetry displays the behavior of a singular Fermi liquid, an elusive property that so far has been observed only in tunneling experiments. This is demonstrated through the singular behavior as $T to 0$ of the specific heat, magnetic susceptibility and impurity resistivity, that are calculated using well known (slightly adapted) conformal field theory techniques. Quite generally, the low temperature dependence of some of these observables displays a remarkable distinction between the SO(n=3,4) Kondo effect, compared with the standard SU(2) one.
108 - D. Meier , N. Leo , T. Jungk 2010
Translation domains differing in the phase but not in the orientation of the corresponding order parameter are resolved in two types of multiferroics. Hexagonal (h-) YMnO$_3$ is a split-order-parameter multiferroic in which commensurate ferroelectric translation domains are resolved by piezoresponse force microscopy whereas MnWO$_4$ is a joint-order-parameter multiferroic in which incommensurate magnetic translation domains are observed by optical second harmonic generation. The pronounced manifestation of the generally rather hidden translation domains in these multiferroics and the associated drastic reduction of symmetry emphasize that the presence of translation domains must not be neglected when discussing the physical properties and functionalities of multiferroics.
The archetypical 3D topological insulators Bi2Se3, Bi2Te3 and Sb2Te3 commonly exhibit high bulk conductivities, hindering the characterization of the surface state charge transport. The optimally doped topological insulators Bi2Te2Se and Bi2-xSbxTe2S , however, allow for such characterizations to be made. Here we report the first experimental comparison of the topological surface states and bulk conductances of Bi2Te2Se and Bi1.1Sb0.9Te2S, based on temperature-dependent high-pressure measurements. We find that the surface state conductance at low temperatures remains constant in the face of orders of magnitude increase in the bulk state conductance, revealing in a straightforward way that the topological surface states and bulk states are decoupled at low temperatures, consistent with theoretical models, and confirming topological insulators to be an excellent venue for studying charge transport in 2D Dirac electron systems.
Anisotropy in electronic structures may ignite intriguing anisotropic optical responses, as has been well demonstrated in various systems including superconductors, semiconductors, and even topological Weyl semimetals. Meanwhile, it is well establish ed in metal optics that the metal reflectance declines from one to zero when the photon frequency is above the plasma frequency {omega}p , behaving as a plasma mirror. However, the exploration of anisotropic plasma mirrors and corresponding applications remains elusive, especially at room temperature. Here, we discover a pronounced anisotropic plasma reflectance edge in the type-II Weyl semimetal WP2, with an anisotropy ratio of {omega}p up to 1.5. Such anisotropic plasma mirror behavior and its robustness against temperature promise optical device applications over a wide temperature range. For example, the high sensitivity of polarization-resolved plasma reflectance edge renders WP2 an inherent polarization detector. We further achieve a room-temperature WP2-based optical switch, effectively controlled by simply tuning the light polarization. These findings extend the frontiers of metal optics as a discipline and promise the design of multifunctional devices combining both topological and optical features.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا