ﻻ يوجد ملخص باللغة العربية
We define, compute and analyze the nonequilibrium differential optical conductivity of the one-dimensional extended Hubbard model at half-filling after applying a pump pulse, using the time-dependent density matrix renormalization group method. The melting of the Mott insulator is accompanied by a suppression of the local magnetic moment and ensuing photogeneration of doublon-holon pairs. The differential optical conductivity reveals $(i)$ mid-gap states related to parity-forbidden optical states, and $(ii)$ strong renormalization and hybridization of the excitonic resonance and the absorption band, yielding a Fano resonance. We offer evidence and interpret such a resonance as a signature of nonequilibrium optical excitations resembling excitonic strings, (bi)excitons, and unbound doublon-holon pairs, depending on the magnitude of the intersite Coulomb repulsion. We discuss our results in the context of pump and probe spectroscopy experiments on organic Mott insulators.
We study the nonequilibrium phase diagram of long-lived photo-doped states in the one-dimensional $U$-$V$ Hubbard model, where $eta$-pairing, spin density wave and charge density wave (CDW) phases are found. The photo-doped states are studied using a
We report strong instantaneous photoinduced absorption (PA) in the quasi-one-dimensional Mott insulator ${rm Sr_2CuO_3}$ in the IR spectral region. The observed PA is to an even-parity two-photon state that occurs immediately above the absorption edg
We study the superfluid-Mott-insulator transition of ultracold bosonic atoms in a one-dimensional optical lattice with a double-well confining trap using the density-matrix renormalization group. At low density, the system behaves similarly as two se
We study high-harmonic generation (HHG) in the one-dimensional Hubbard model in order to understand its relation to elementary excitations as well as the similarities and differences to semiconductors. The simulations are based on the infinite time-e
We calculate the non-equilibrium electronic transport properties of a one-dimensional interacting chain at half filling, coupled to non-interacting leads. The interacting chain is initially in a Mott insulator state that is driven out of equilibrium