ترغب بنشر مسار تعليمي؟ اضغط هنا

EFT for Soft Drop Double Differential Cross Section

81   0   0.0 ( 0 )
 نشر من قبل Aditya Pathak
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a factorization framework to compute the double differential cross section in soft drop groomed jet mass and groomed jet radius. We describe the effective theories in the large, intermediate, and small groomed jet radius regions defined by the interplay of the jet mass and the groomed jet radius measurement. As an application we present the NLL$$ results for the perturbative moments that are related to the coefficients $C_1$ and $C_2$ that specify the leading hadronization corrections up to three universal parameters. We compare our results with Monte Carlo simulations and a calculation using the coherent branching method.



قيم البحث

اقرأ أيضاً

An empirical model for the $pp$ elastic differential cross section is proposed. Inspired by early work by Barger and Phillips, we parametrize the scattering amplitude in building blocks, comprising of two exponentials with a relative phase, supplemen ting the dominant term at small $-t$ with the proton form factor. This model suitably applies to LHC7 and ISR data, enabling to make simple predictions for higher LHC energies and to check whether asymptotia might be achieved.
A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section ($frac{d^2sigma}{dT_mu dcostheta_mu}$) for charg ed-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ($sigma[E_ u]$) and the single differential cross section ($frac{dsigma}{dQ^2}$) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.
102 - Daniele Treleani 2007
The rates of multiparton collisions in high energy hadronic interactions provide information on the typical transverse distances between partons in the hadron structure. The different configurations of the hadron in transverse space are, on the other hand, at the origin of hadron diffraction. The relation between the two phenomena is exploted in an eikonal model of hadronic interactions.
The neutron-proton bremsstrahlung process $(np to npgamma)$ is known to be sensitive to meson exchange currents in the nucleon-nucleon interaction. The triply differential cross section for this reaction has been measured for the first time at the Lo s Alamos Neutron Science Center, using an intense, pulsed beam of up to 700 MeV neutrons to bombard a liquid hydrogen target. Scattered neutrons were observed at six angles between 12$^circ$ and 32$^circ$, and the recoil protons were observed in coincidence at 12$^circ$, 20$^circ$, and 28$^circ$ on the opposite side of the beam. Measurement of the neutron and proton energies at known angles allows full kinematic reconstruction of each event. The data are compared with predictions of two theoretical calculations, based on relativistic soft-photon and non-relativistic potential models.
The largest sample ever recorded of $ umub$ charged-current quasi-elastic (CCQE, $ umub + p to mup + n$) candidate events is used to produce the minimally model-dependent, flux-integrated double-differential cross section $frac{d^{2}sigma}{dT_mu duz} $ for $ umub$ incident on mineral oil. This measurement exploits the unprecedented statistics of the MiniBooNE anti-neutrino mode sample and provides the most complete information of this process to date. Also given to facilitate historical comparisons are the flux-unfolded total cross section $sigma(E_ u)$ and single-differential cross section $frac{dsigma}{dqsq}$ on both mineral oil and on carbon by subtracting the $ umub$ CCQE events on hydrogen. The observed cross section is somewhat higher than the predicted cross section from a model assuming independently-acting nucleons in carbon with canonical form factor values. The shape of the data are also discrepant with this model. These results have implications for intra-nuclear processes and can help constrain signal and background processes for future neutrino oscillation measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا