ﻻ يوجد ملخص باللغة العربية
In this paper we introduce the definition of topological $r$-pressure of free semigroup actions on compact metric space and provide some properties of it. Through skew-product transformation into a medium, we can obtain the following two main results. 1. We extend the result that the topological pressure is the limit of topological $r$-pressure incite{C} to free semigroup actions ($rto 0$). 2. Let $f_i,$ $i=0, 1, cdots, m-1$, be homeomorphisms on a compact metric space. For any continuous function, we verify that the topological pressure of $f_0, cdots, f_{m-1}$ equals the topological pressure of $f_0^{-1}, cdots, f_{m-1}^{-1}.$
We define the topological pressure for any sub-additive potentials of the countable discrete amenable group action and any given open cover. A local variational principle for the topological pressure is established.
We introduce the notion of localized topological pressure for continuous maps on compact metric spaces. The localized pressure of a continuous potential $varphi$ is computed by considering only those $(n,epsilon)$-separated sets whose statistical sum
This paper studies the notion of W-measurable sensitivity in the context of semigroup actions. W-measurable sensitivity is a measurable generalization of sensitive dependence on initial conditions. In 2012, Grigoriev et. al. proved a classification r
In ergodic theory, given sufficient conditions on the system, every weak mixing $mathbb{N}$-action is strong mixing along a density one subset of $mathbb{N}$. We ask if a similar statement holds in topological dynamics with density one replaced with
A dynamical system is a pair $(X,G)$, where $X$ is a compact metrizable space and $G$ is a countable group acting by homeomorphisms of $X$. An endomorphism of $(X,G)$ is a continuous selfmap of $X$ which commutes with the action of $G$. One says that