ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-interacting Dark Matter with Scalar Dilepton Mediator

215   0   0.0 ( 0 )
 نشر من قبل Chung Kao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cold dark matter (CDM) candidate with weakly interacting massive particles can successfully explain the observed dark matter relic density in cosmic scale and the large-scale structure of the Universe. However, a number of observations at the satellite galaxy scale seem to be inconsistent with CDM simulation. This is known as the small-scale problem of CDM. In recent years, it has been demonstrated that self-interacting dark matter (SIDM) with a light mediator offers a reasonable explanation for the small-scale problem. We adopt a simple model with SIDM and focus on the effects of Sommerfeld enhancement. In this model, the dark matter candidate is a leptonic scalar particle with a light mediator. We have found several regions of the parameter space with proper masses and coupling strength generating a relic density that is consistent with the observed CDM relic density. Furthermore, this model satisfies the constraints of recent direct searches and indirect detection for dark matter as well as the effective number of neutrinos and the observed small-scale structure of the Universe. In addition, this model with the favored parameters can resolve the discrepancies between astrophysical observations and $N$-body simulations.

قيم البحث

اقرأ أيضاً

Light vector mediators can naturally induce velocity-dependent dark matter self-interactions while at the same time allowing for the correct dark matter relic abundance via thermal freeze-out. If these mediators subsequently decay into Standard Model states such as electrons or photons however, this is robustly excluded by constraints from the Cosmic Microwave Background. We study to what extent this conclusion can be circumvented if the vector mediator is stable and hence contributes to the dark matter density while annihilating into lighter degrees of freedom. We find viable parts of parameter space which lead to the desired self-interaction cross section of dark matter to address the small-scale problems of the collisionless cold dark matter paradigm while being compatible with bounds from the Cosmic Microwave Background and Big Bang Nucleosynthesis observations.
We examine Simplified Models in which fermionic DM interacts with Standard Model (SM) fermions via the exchange of an $s$-channel scalar mediator. The single-mediator version of this model is not gauge invariant, and instead we must consider models w ith two scalar mediators which mix and interfere. The minimal gauge invariant scenario involves the mixing of a new singlet scalar with the Standard Model Higgs boson, and is tightly constrained. We construct two Higgs doublet model (2HDM) extensions of this scenario, where the singlet mixes with the 2nd Higgs doublet. Compared with the one doublet model, this provides greater freedom for the masses and mixing angle of the scalar mediators, and their coupling to SM fermions. We outline constraints on these models, and discuss Yukawa structures that allow enhanced couplings, yet keep potentially dangerous flavour violating process under control. We examine the direct detection phenomenology of these models, accounting for interference of the scalar mediators, and interference of different quarks in the nucleus. Regions of parameter space consistent with direct detection measurements are determined.
The existence of dark matter particles that carry phenomenologically relevant self-interaction cross sections mediated by light dark sector states is considered to be severely constrained through a combination of experimental and observational data. The conclusion is based on the assumption of specific dark matter production mechanisms such as thermal freeze-out together with an extrapolation of a standard cosmological history beyond the epoch of primordial nucleosynthesis. In this work, we drop these assumptions and examine the scenario from the perspective of the current firm knowledge we have: results from direct and indirect dark matter searches and cosmological and astrophysical observations, without additional assumptions on dark matter genesis or the thermal state of the very early universe. We show that even in the minimal set-up, where dark matter particles self-interact via a kinetically mixed vector mediator, a significant amount of parameter space remains allowed. Interestingly, however, these parameter regions imply a meta-stable, light mediator, which in turn calls for modified search strategies.
We investigate the thermal cosmology and terrestrial and astrophysical phenomenology of a sub-GeV hadrophilic dark sector. The specific construction explored in this work features a Dirac fermion dark matter candidate interacting with a light scalar mediator that dominantly couples to the up-quark. The correct freeze-out relic abundance may be achieved via dark matter annihilation directly to hadrons or through secluded annihilation to scalar mediators. A rich and distinctive phenomenology is present in this scenario, with probes arising from precision meson decays, proton beam dump experiments, colliders, direct detection experiments, supernovae, and nucleosynthesis. In the future, experiments such as NA62, REDTOP, SHiP, SBND, and NEWS-G will be able to explore a significant portion of the cosmologically motivated parameter space.
Dark matter may self-interact through a continuum of low-mass states. This happens if dark matter couples to a strongly-coupled nearly-conformal hidden sector. This type of theory is holographically described by brane-localized dark matter interactin g with bulk fields in a slice of 5D anti-de Sitter space. The long-range potential in this scenario depends on a non-integer power of the spatial separation, in contrast to the Yukawa potential generated by the exchange of a single 4D mediator. The resulting self-interaction cross section scales like a non-integer power of velocity. We identify the Born, classical and resonant regimes and investigate them using state-of-the-art numerical methods. We demonstrate the viability of our continuum-mediated framework to address the astrophysical small-scale structure anomalies. Investigating the continuum-mediated Sommerfeld enhancement, we demonstrate that a pattern of resonances can occur depending on the non-integer power. We conclude that continuum mediators introduce novel power-law scalings which open new possibilities for dark matter self-interaction phenomenology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا