ﻻ يوجد ملخص باللغة العربية
In the no-scale supergravity with Type-I Seesaw model of Non-minimal supersymmetric standard model (NMSSM), we have analysed inflation, reheating and leptogenesis. A no-scale supergravity realization of Starobinsky model of inflation in simple Wess-Zumino model have been shown earlier by Ellis et al. Here we show a no-scale supergravity realization of Starobinsky model of inflation in Type-I Seesaw framework of NMSSM. In this framework an appropriate choice of no-scale Kahler potential results in Starobinsky like plateau inflation along a Higgs-sneutrino $D$-flat direction consistent with the CMB observations. In leptogenesis, the soft-breaking trilinear and bilinear terms play important role. Using conditions for non-thermal contribution to $CP$ asymmetry and successful leptogenesis together with the appropriate reheating at the end of inflation, we have obtained important constraints on the soft supersymmetry breaking parameters.
We investigate the possibility of low-scale leptogenesis in the minimal supersymmetric standard model extended with right handed (s)neutrinos. We demonstrate that successful leptogenesis can be easily achieved at a scale as low as ~ TeV where lepton
No-scale supergravity provides a successful framework for Starobinsky-like inflation models. Two classes of models can be distinguished depending on the identification of the inflaton with the volume modulus, $T$ (C-models), or a matter-like field, $
We study the transformation into a baryon asymmetry of a charge initially stored in a complex (waterfall) scalar field at the end of a hybrid inflation phase as described in Ref[1]. The waterfall field is coupled to right-handed neutrinos, and is als
Recent studies suggest that the process of symmetry breaking after inflation typically occurs very fast, within a single oscillation of the symmetry-breaking field, due to the spinodal growth of its long-wave modes, otherwise known as `tachyonic preh
We study a scale-invariant model of quadratic gravity with a non-minimally coupled scalar field. We focus on cosmological solutions and find that scale invariance is spontaneously broken and a mass scale naturally emerges. Before the symmetry breakin