ترغب بنشر مسار تعليمي؟ اضغط هنا

Behaviors of Ca II K line in A-type stars

223   0   0.0 ( 0 )
 نشر من قبل Yoichi Takeda
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yoichi Takeda




اسأل ChatGPT حول البحث

A synthetic spectrum-fitting analysis was applied to the Ca II line at 3933.68 A for 122 A-type stars (7000 <Te < 10000 K) in a wide range of rotational velocity (10 < vsini < 300 km/s), in order to study the behaviors of Ca abundances ([Ca/H]39) determined from this Ca II 3934 line, especially in context of (i) how they are related with the Am phenomenon (often seen in slow rotators) and (ii) whether they are consistent with the Ca abundances ([Ca/H]61) derived from the weaker Ca I 6162 line. It was confirmed that Ca line strengths in Am stars tend to be weaker and associated abundances are lower compared to non-Am stars at the same Te, indicating a deficiency of Ca in the photosphere of Am stars. However, an appreciable fraction of cool Am stars (Te < 8000 K) were found to show anomalous Ca II 3934 line feature (i.e., unusually broad for its weakness) which is hard to explain. Regarding the comparison between [Ca/H]39 and [Ca/H]61, while both are roughly consistent for hotter stars (Te > 8000 K), the former tends to be lower (by up to -1 dex or even more) than the latter for cooler A stars (Te < 8000 K) including those weak broad K line objects, This fact suggests that some special mechanism reducing the strength of Ca II 3934 line is involved at Te < 8000 K where [Ca/H]39 would be no more reliable. Whereas atomic diffusion causing the deficit of Ca in the photosphere as a result of element segregation in the deeper radiative envelope may be regarded as a promising explanation because it seems to fit in the qualitative trend of [Ca/H]61 in A-type stars, the well-known feature of considerably weak Ca II K line in classical Am stars should not necessarily be attributed to only this element diffusion scenario, for which some unknown weakening mechanism specific to this resonance line may independently be operative.

قيم البحث

اقرأ أيضاً

Measurements of the asymmetry of the emission peaks in the core of the Ca II H line for 105 giant stars are reported. The asymmetry is quantified with the parameter V/R, defined as the ratio between the maximum number of counts in the blueward peak a nd the redward peak of the emission profile. The Ca II H and K emission lines probe the differential motion of certain chromospheric layers in the stellar atmosphere. Data on V/R for the Ca II K line are drawn from previous papers and compared to the analogous H line ratio, the H and K spectra being from the same sets of observations. It is found that the H line V/R value is +0.04 larger, on average, than the equivalent K line ratio, however, the difference varies with B-V color. Red giants cooler than B-V = 1.2 are more likely to have the H line V/R larger than the K line V/R, whereas the opposite is true for giants hotter than B-V = 1.2. The differences between the Ca II H and K line asymmetries could be caused by the layers of chromospheric material from which these emission features arise moving with different velocities in an expanding outflow.
Context. There are more than 3000 confirmed and probable known Galactic planetary nebulae, but central star spectroscopic information is available for only 13% of them. Aims. We undertook a spectroscopic survey of central stars of PNe to identify the ir spectral types. Methods. We performed spectroscopic observations, at low resolution, with the 2-m telescope at CASLEO, Argentina. Results. We present the spectra of 46 central stars of PNe, most of them are OB-type and emission-line stars.
Analysis of over 36 years of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates five components of the variation of the seven measured chromospheric parameters: (a) the solar cycle (period ~ 11 years), (b) quasi-periodic variations (periods ~100 days), (c) a broad band stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (a) and (b) at time scales in the range ~0.1 - 10 years. These results using only full-disk data suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as thosebeing produced by NASAs Kepler observatory. Component (c) consists of variations over a range of timescales, in the manner of a 1/f random process with a power-law slope index that varies in a systematic way. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the more rapid variations of the stochastic process (c). Component (d) characterizes differential rotation of the active regions. Component (e) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The data analyzed in this paper can be found at the National Solar Observatory web site http://nsosp.nso.edu/cak_mon/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters
We perform the non-local thermodynamic equilibrium (NLTE) calculations for Ca I-II with the updated model atom that includes new quantum-mechanical rate coefficients for Ca I + H I collisions from two recent studies, that is, by Barklem and by Mitrus hchenkov, Guitou, Belyaev, Yakovleva, Spielfiedel, and Feautrier, and investigate the accuracy of calcium abundance determinations using the Sun, Procyon, and five metal-poor (MP) stars with well-determined stellar parameters. We show that both collisional recipes lead to very similar NLTE results. When using the subordinate lines of Ca I and the high-excitation lines of Ca II, NLTE provides the smaller line-to-line scatter compared with the LTE case for each star. For Procyon, NLTE removes a steep trend with line strength among strong Ca I lines seen in LTE and leads to consistent [Ca/H] abundances from the two ionisation stages. In the MP stars, the NLTE abundance from Ca II 8498 A agrees well with that from the Ca I subordinate lines. NLTE largely removes abundance discrepancies between the high-excitation lines of Ca I and Ca II 8498 A obtained for our four [Fe/H] < -2 stars under the LTE assumption. We investigate the formation of the Ca I resonance line in the [Fe/H] < -2 stars. Consistent NLTE abundances from the Ca I resonance line and the Ca II lines are found for two hyper metal-poor stars HE0107-5240 and HE1327-2326. We provide the NLTE abundance corrections for 28 lines of Ca I in a grid of model atmospheres suitable for abundance analysis of FGK-type dwarfs and subgiants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا