ﻻ يوجد ملخص باللغة العربية
ErTe$_3$ is studied as a model system to explore thermal transport in a layered charge density wave (CDW) material. We present data from thermal diffusivity, resistivity, and specific heat measurements: There is a sharp decrease in thermal conductivity both parallel and perpendicular to the primary CDW at the CDW transition temperature. At the same time, the resistivity changes more gradually. Correspondingly, while well above and below $T_c$, a consistent description of the thermal transport applies with essentially independent electron and phonon contributions (estimated using the Wiedemann Franz law), in the critical regime no such description is possible; the observed behavior corresponds to a strongly coupled electron-phonon critical `soup.
The Wiedemann-Franz (WF) law links the ratio of electronic charge and heat conductivity to fundamental constants. It has been tested in numerous solids, but the extent of its relevance to the anomalous transverse transport, which represents the topol
The thermal conductivity measurements have been performed on the heavy-fermion compound YbRh2Si2 down to 0.04 K and under magnetic fields through a quantum critical point (QCP) at Bc = 0.66 T || c-axis. In the limit as T -> 0, we find that the Wiedem
The Wiedemann-Franz law, connecting the electronic thermal conductivity to the electrical conductivity of a disordered metal, is generally found to be well satisfied even when electron-electron (e-e) interactions are strong. In ultra-clean conductors
We study the thermal transport through a Majorana island connected to multiple external quantum wires. In the presence of a large charging energy, we find that the Wiedemann-Franz law is nontrivially violated at low temperature, contrarily to what ha
We study energy and particle transport for one-dimensional strongly interacting bosons through a single channel connecting two atomic reservoirs. We show the emergence of particle- and energy- current separation, leading to the violation of the Wiede