ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal Silicon Microwave Photonic Spectral Shaper

95   0   0.0 ( 0 )
 نشر من قبل David Marpaung
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical modulation plays arguably the utmost important role in microwave photonic (MWP) systems. Precise synthesis of modulated optical spectra dictates virtually all aspects of MWP system quality including loss, noise figure, linearity, and the types of functionality that can be executed. But for such a critical function, the versatility to generate and transform analog optical modulation is severely lacking, blocking the pathways to truly unique MWP functions including ultra-linear links and low-loss high rejection filters. Here we demonstrate versatile RF photonic spectrum synthesis in an all-integrated silicon photonic circuit, enabling electrically-tailorable universal analog modulation transformation. We show a series of unprecedented RF filtering experiments through monolithic integration of the spectrum-synthesis circuit with a network of reconfigurable ring resonators.

قيم البحث

اقرأ أيضاً

Optical beamforming networks (OBFNs) based on optical true time delay lines (OTTDLs) are well-known as the promising candidate to solve the bandwidth limitation of traditional electronic phased array antennas (PAAs) due to beam squinting. Here we rep ort the first monolithic 1x8 microwave photonic beamformer based on switchable OTTDLs on the silicon-on-insulator platform. The chip consists of a modulator, an eight-channel OBFN, and 8 photodetectors, which includes hundreds of active and passive components in total. It has a wide operating bandwidth from 8 to 18 GHz, which is almost two orders larger than that of electronic PAAs. The beam can be steered to 31 distinguishable angles in the range of -75.51{deg} to 75.64{deg} based on the beam pattern calculation with the measured RF response. The response time for beam steering is 56 {mu}s. These results represent a significant step towards the realization of integrated microwave photonic beamformers that can satisfy compact size and low power consumption requirements for the future radar and wireless communication systems.
Low-loss fiber optic links have the potential to connect superconducting quantum processors together over long distances to form large scale quantum networks. A key component of these future networks is a quantum transducer that coherently and bidire ctionally converts photons from microwave frequencies to optical frequencies. We present a platform for electro-optic photon conversion based on silicon-organic hybrid photonics. Our device combines high quality factor microwave and optical resonators with an electro-optic polymer cladding to perform microwave-to-optical photon conversion from 6.7 GHz to 193 THz (1558 nm). The device achieves an electro-optic coupling rate of 330 Hz in a millikelvin dilution refrigerator environment. We use an optical heterodyne measurement technique to demonstrate the single-sideband nature of the conversion with a selectivity of approximately 10 dB. We analyze the effects of stray light in our device and suggest ways in which this can be mitigated. Finally, we present initial results on high-impedance spiral resonators designed to increase the electro-optic coupling.
Universal unitary photonic devices can apply arbitrary unitary transformations to a vector of input modes and provide a promising hardware platform for fast and energy-efficient machine learning using light. We simulate the gradient-based optimizatio n of random unitary matrices on universal photonic devices composed of imperfect tunable interferometers. If device components are initialized uniform-randomly, the locally-interacting nature of the mesh components biases the optimization search space towards banded unitary matrices, limiting convergence to random unitary matrices. We detail a procedure for initializing the device by sampling from the distribution of random unitary matrices and show that this greatly improves convergence speed. We also explore mesh architecture improvements such as adding extra tunable beamsplitters or permuting waveguide layers to further improve the training speed and scalability of these devices.
We experimentally demonstrate an all-optical programmable thresholder on a silicon photonic circuit. By exploiting the nonlinearities in a resonator-enhanced Mach-Zehnder interferometer (MZI), the proposed optical thresholder can discriminate two opt ical signals with very similar amplitudes. We experimentally achieve a signal contrast enhancement of 40, which leads to a bit error rate (BER) improvement by 5 orders of magnitude and a receiver sensitivity improvement of 11 dB. We present the thresholding function of our device and validate the function with experimental data. Furthermore, we investigate potential device speed improvement by reducing the carrier lifetime.
Opto-mechanical interactions in planar photonic integrated circuits draw great interest in basic research and applications. However, opto-mechanics is practically absent in the most technologically significant photonics platform: silicon on insulator . Previous demonstrations required the under-etching and suspension of silicon structures. Here we present surface acoustic wave-photonic devices in silicon on insulator, up to 8 GHz frequency. Surface waves are launched through absorption of modulated pump light in metallic gratings and thermoelastic expansion. The surface waves are detected through photo-elastic modulation of an optical probe in standard race-track resonators. Devices do not involve piezo-electric actuation, suspension of waveguides or hybrid material integration. Wavelength conversion of incident microwave signals and acoustic true time delays up to 40 ns are demonstrated on-chip. Lastly, discrete-time microwave-photonic filters with up to six taps and 20 MHz wide passbands are realized using acoustic delays. The concept is suitable for integrated microwave-photonics signal processing
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا