ﻻ يوجد ملخص باللغة العربية
Qubits encoded in hyperfine states of trapped ions are ideal for quantum computation given their long lifetimes and low sensitivity to magnetic fields, yet they suffer from off-resonant scattering during detection often limiting their measurement fidelity. In ${}^{171}$Yb$^{+}$ this is exacerbated by a low fluorescence yield, which leads to a need for complex and expensive hardware - a problematic bottleneck especially when scaling up the number of qubits. We demonstrate a detection routine based on electron shelving to address this issue in ${}^{171}$Yb$^{+}$ and achieve a 5.6$times$ reduction in single-ion detection error on an avalanche photodiode to $1.8(2)times10^{-3}$ in a 100 $mu$s detection period, and a 4.3$times$ error reduction on an electron multiplying CCD camera, with $7.7(2)times10^{-3}$ error in 400 $mu$s. We further improve the characterization of a repump transition at 760 nm to enable a more rapid reset of the auxiliary $^2$F$_{7/2}$ states populated after shelving. Finally, we examine the detection fidelity limit using the long-lived $^2$F$_{7/2}$ state, achieving a further 300$times$ and 12$times$ reduction in error to $6(7)times10^{-6}$ and $6.3(3)times10^{-4}$ in 1 ms on the respective detectors. While shelving-rate limited in our setup, we suggest various techniques to realize this detection method at speeds compatible with quantum information processing, providing a pathway to ultra-high fidelity detection in ${}^{171}$Yb$^{+}$.
A data acquisition system is described that is designed to stabilize cooling and probe rates to maximize detection sensitivity and minimize possible systematic errors due to correlations between drifting experimental conditions and varying drive para
The lifetime of the metastable 5d$^2$D$_{5/2}$ state has been measured for a single trapped Ba$^+$ ion in a Paul trap in Ultra High Vacuum (UHV) in the 10$^{-10}$ mbar pressure range. A total of 5046 individual periods when the ion was shelved in thi
The highly forbidden $^2$S$_{1/2} rightarrow ^2$F$_{7/2}$ electric octupole transition in $^{171}$Yb$^+$ is a potential candidate for a redefinition of the SI second. We present a measurement of the absolute frequency of this optical transition, perf
We investigate the ultrafast dynamics of Cd$_2$Os$_2$O$_7$, a prototype material showing a Lifshitz-type transition as a function of temperature. In the paramagnetic metallic state, the photo-reflectivity shows a sub-picosecond relaxation, followed b
Elastic neutron scattering, ac susceptibility, and specific heat experiments on the pyrochlores Er$_{2}$Ge$_{2}$O$_{7}$ and Yb$_{2}$Ge$_{2}$O$_{7}$ show that both systems are antiferromagnetically ordered in the $Gamma_5$ manifold. The ground state i