ترغب بنشر مسار تعليمي؟ اضغط هنا

On Approximation Algorithm for Orthogonal Low-Rank Tensor Approximation

97   0   0.0 ( 0 )
 نشر من قبل Yuning Yang
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Yuning Yang




اسأل ChatGPT حول البحث

The goal of this work is to fill a gap in [Yang, SIAM J. Matrix Anal. Appl, 41 (2020), 1797--1825]. In that work, an approximation procedure was proposed for orthogonal low-rank tensor approximation; however, the approximation lower bound was only established when the number of orthonormal factors is one. To this end, by further exploring the multilinearity and orthogonality of the problem, we introduce a modified approximation algorithm. Approximation lower bound is established, either in deterministic or expected sense, no matter how many orthonormal factors there are. In addition, a major feature of the new algorithm is its flexibility to allow either deterministic or randomized procedures to solve a key step of each latent orthonormal factor involved in the algorithm. This feature can reduce the computation of large SVDs, making the algorithm more efficient. Some numerical studies are provided to validate the usefulness of the proposed algorithm.



قيم البحث

اقرأ أيضاً

81 - Yuning Yang 2019
The epsilon alternating least squares ($epsilon$-ALS) is developed and analyzed for canonical polyadic decomposition (approximation) of a higher-order tensor where one or more of the factor matrices are assumed to be columnwisely orthonormal. It is s hown that the algorithm globally converges to a KKT point for all tensors without any assumption. For the original ALS, by further studying the properties of the polar decomposition, we also establish its global convergence under a reality assumption not stronger than those in the literature. These results completely address a question concerning the global convergence raised in [L. Wang, M. T. Chu and B. Yu, emph{SIAM J. Matrix Anal. Appl.}, 36 (2015), pp. 1--19]. In addition, an initialization procedure is proposed, which possesses a provable lower bound when the number of columnwisely orthonormal factors is one. Armed with this initialization procedure, numerical experiments show that the $epsilon$-ALS exhibits a promising performance in terms of efficiency and effectiveness.
225 - Troy Lee , Adi Shraibman 2021
One of the strongest techniques available for showing lower bounds on quantum communication complexity is the logarithm of the approximation rank of the communication matrix--the minimum rank of a matrix which is entrywise close to the communication matrix. This technique has two main drawbacks: it is difficult to compute, and it is not known to lower bound quantum communication complexity with entanglement. Linial and Shraibman recently introduced a norm, called gamma_2^{alpha}, to quantum communication complexity, showing that it can be used to lower bound communication with entanglement. Here the parameter alpha is a measure of approximation which is related to the allowable error probability of the protocol. This bound can be written as a semidefinite program and gives bounds at least as large as many techniques in the literature, although it is smaller than the corresponding alpha-approximation rank, rk_alpha. We show that in fact log gamma_2^{alpha}(A)$ and log rk_{alpha}(A)$ agree up to small factors. As corollaries we obtain a constant factor polynomial time approximation algorithm to the logarithm of approximate rank, and that the logarithm of approximation rank is a lower bound for quantum communication complexity with entanglement.
145 - Yuning Yang , Yunlong Feng 2020
Higher-order tensor canonical polyadic decomposition (CPD) with one or more of the latent factor matrices being columnwisely orthonormal has been well studied in recent years. However, most existing models penalize the noises, if occurring, by employ ing the least squares loss, which may be sensitive to non-Gaussian noise or outliers, leading to bias estimates of the latent factors. In this paper, based on the maximum a posterior estimation, we derive a robust orthogonal tensor CPD model with Cauchy loss, which is resistant to heavy-tailed noise or outliers. By exploring the half-quadratic property of the model, a new method, which is termed as half-quadratic alternating direction method of multipliers (HQ-ADMM), is proposed to solve the model. Each subproblem involved in HQ-ADMM admits a closed-form solution. Thanks to some nice properties of the Cauchy loss, we show that the whole sequence generated by the algorithm globally converges to a stationary point of the problem under consideration. Numerical experiments on synthetic and real data demonstrate the efficiency and robustness of the proposed model and algorithm.
292 - An-Bao Xu 2020
This paper considers the completion problem for a tensor (also referred to as a multidimensional array) from limited sampling. Our greedy method is based on extending the low-rank approximation pursuit (LRAP) method for matrix completions to tensor c ompletions. The method performs a tensor factorization using the tensor singular value decomposition (t-SVD) which extends the standard matrix SVD to tensors. The t-SVD leads to a notion of rank, called tubal-rank here. We want to recreate the data in tensors from low resolution samples as best we can here. To complete a low resolution tensor successfully we assume that the given tensor data has low tubal-rank. For tensors of low tubal-rank, we establish convergence results for our method that are based on the tensor restricted isometry property (TRIP). Our result with the TRIP condition for tensors is similar to low-rank matrix completions under the RIP condition. The TRIP condition uses the t-SVD for low tubal-rank tensors, while RIP uses the SVD for matrices. We show that a subgaussian measurement map satisfies the TRIP condition with high probability and gives an almost optimal bound on the number of required measurements. We compare the numerical performance of the proposed algorithm with those for state-of-the-art approaches on video recovery and color image recovery.
Higher-order low-rank tensor arises in many data processing applications and has attracted great interests. Inspired by low-rank approximation theory, researchers have proposed a series of effective tensor completion methods. However, most of these m ethods directly consider the global low-rankness of underlying tensors, which is not sufficient for a low sampling rate; in addition, the single nuclear norm or its relaxation is usually adopted to approximate the rank function, which would lead to suboptimal solution deviated from the original one. To alleviate the above problems, in this paper, we propose a novel low-rank approximation of tensor multi-modes (LRATM), in which a double nonconvex $L_{gamma}$ norm is designed to represent the underlying joint-manifold drawn from the modal factorization factors of the underlying tensor. A block successive upper-bound minimization method-based algorithm is designed to efficiently solve the proposed model, and it can be demonstrated that our numerical scheme converges to the coordinatewise minimizers. Numerical results on three types of public multi-dimensional datasets have tested and shown that our algorithm can recover a variety of low-rank tensors with significantly fewer samples than the compared methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا