ترغب بنشر مسار تعليمي؟ اضغط هنا

Dispersive Riemann problem for the Benjamin-Bona-Mahony equation

153   0   0.0 ( 0 )
 نشر من قبل Mark Hoefer Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Long time dynamics of the smoothed step initial value problem or dispersive Riemann problem for the Benjamin-Bona-Mahony (BBM) equation $u_t + uu_x = u_{xxt}$ are studied using asymptotic methods and numerical simulations. The catalog of solutions of the dispersive Riemann problem for the BBM equation is much richer than for the related, integrable, Korteweg-de Vries equation $u_t + uu_x + u_{xxx} =0.$ The transition width of the initial smoothed step is found to significantly impact the dynamics. Narrow width gives rise to rarefaction and dispersive shock wave (DSW) solutions that are accompanied by the generation of two-phase linear wavetrains, solitary wave shedding, and expansion shocks. Both narrow and broad initial widths give rise to two-phase nonlinear wavetrains or DSW implosion and a new kind of dispersive Lax shock for symmetric data. The dispersive Lax shock is described by an approximate self-similar solution of the BBM equation whose limit as $t to infty$ is a stationary, discontinuous weak solution. By introducing a slight asymmetry in the data for the dispersive Lax shock, the generation of an incoherent solitary wavetrain is observed. Further asymmetry leads to the DSW implosion regime that is effectively described by a pair of coupled nonlinear Schr{o}dinger equations. The complex interplay between nonlocality, nonlinearity and dispersion in the BBM equation underlies the rich variety of nonclassical dispersive hydrodynamic solutions to the dispersive Riemann problem.



قيم البحث

اقرأ أيضاً

72 - G. T. Adamashvili 2020
New two-component vector breather solution of the modified Benjamin-Bona-Mahony (MBBM) equation is considered. Using the generalized perturbation reduction method the MBBM equation is reduced to the coupled nonlinear Schrodinger equations for auxilia ry functions. Explicit analytical expressions for the profile and parameters of the vector breather oscillating with the sum and difference of the frequencies and wavenumbers are presented. The two-component vector breather and single-component scalar breather of the MBBM equation is compared.
219 - Bixiang Wang 2008
We prove the existence of a compact random attractor for the stochastic Benjamin-Bona-Mahony Equation defined on an unbounded domain. This random attractor is invariant and attracts every pulled-back tempered random set under the forward flow. The as ymptotic compactness of the random dynamical system is established by a tail-estimates method, which shows that the solutions are uniformly asymptotically small when space and time variables approach infinity.
We examine the effect of dissipation on traveling waves in nonlinear dispersive systems modeled by Benjamin- Bona- Mahony (BBM)-like equations. In the absence of dissipation the BBM-like equations are found to support soliton and compacton/anticompac ton solutions depending on whether the dispersive term is linear or nonlinear. We study the influence of increasing nonlinearity of the medium on the soliton- and compacton dynamics. The dissipative effect is found to convert the solitons either to undular bores or to shock-like waves depending on the degree of nonlinearity of the equations. The anticompacton solutions are also transformed to undular bores by the effect of dissipation. But the compactons tend to vanish due to viscous effects. The local oscillatory structures behind the bores and/or shock-like waves in the case of solitons and anticompactons are found to depend sensitively both on the coefficient of viscosity and solution of the unperturbed problem.
We develop a general approach to the description of dispersive shock waves (DSWs) for a class of nonlinear wave equations with a nonlocal Benjamin-Ono type dispersion term involving the Hilbert transform. Integrability of the governing equation is no t a pre-requisite for the application of this method which represents a modification of the DSW fitting method previously developed for dispersive-hydrodynamic systems of Korteweg-de Vries (KdV) type (i.e. reducible to the KdV equation in the weakly nonlinear, long wave, unidirectional approximation). The developed method is applied to the Calogero-Sutherland dispersive hydrodynamics for which the classification of all solution types arising from the Riemann step problem is constructed and the key physical parameters (DSW edge speeds, lead soliton amplitude, intermediate shelf level) of all but one solution type are obtained in terms of the initial step data. The analytical results are shown to be in excellent agreement with results of direct numerical simulations.
201 - G.A. El , M.A. Hoefer , M. Shearer 2015
We consider two physically and mathematically distinct regularization mechanisms of scalar hyperbolic conservation laws. When the flux is convex, the combination of diffusion and dispersion are known to give rise to monotonic and oscillatory travelin g waves that approximate shock waves. The zero-diffusion limits of these traveling waves are dynamically expanding dispersive shock waves (DSWs). A richer set of wave solutions can be found when the flux is non-convex. This review compares the structure of solutions of Riemann problems for a conservation law with non-convex, cubic flux regularized by two different mechanisms: 1) dispersion in the modified Korteweg--de Vries (mKdV) equation; and 2) a combination of diffusion and dispersion in the mKdV-Burgers equation. In the first case, the possible dynamics involve two qualitatively different types of DSWs, rarefaction waves (RWs) and kinks (monotonic fronts). In the second case, in addition to RWs, there are traveling wave solutions approximating both classical (Lax) and non-classical (undercompressive) shock waves. Despite the singular nature of the zero-diffusion limit and rather differing analytical approaches employed in the descriptions of dispersive and diffusive-dispersive regularization, the resulting comparison of the two cases reveals a number of striking parallels. In contrast to the case of convex flux, the mKdVB to mKdV mapping is not one-to-one. The mKdV kink solution is identified as an undercompressive DSW. Other prominent features, such as shock-rarefactions, also find their purely dispersive counterparts involving special contact DSWs, which exhibit features analogous to contact discontinuities. This review describes an important link between two major areas of applied mathematics, hyperbolic conservation laws and nonlinear dispersive waves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا