ﻻ يوجد ملخص باللغة العربية
Long time dynamics of the smoothed step initial value problem or dispersive Riemann problem for the Benjamin-Bona-Mahony (BBM) equation $u_t + uu_x = u_{xxt}$ are studied using asymptotic methods and numerical simulations. The catalog of solutions of the dispersive Riemann problem for the BBM equation is much richer than for the related, integrable, Korteweg-de Vries equation $u_t + uu_x + u_{xxx} =0.$ The transition width of the initial smoothed step is found to significantly impact the dynamics. Narrow width gives rise to rarefaction and dispersive shock wave (DSW) solutions that are accompanied by the generation of two-phase linear wavetrains, solitary wave shedding, and expansion shocks. Both narrow and broad initial widths give rise to two-phase nonlinear wavetrains or DSW implosion and a new kind of dispersive Lax shock for symmetric data. The dispersive Lax shock is described by an approximate self-similar solution of the BBM equation whose limit as $t to infty$ is a stationary, discontinuous weak solution. By introducing a slight asymmetry in the data for the dispersive Lax shock, the generation of an incoherent solitary wavetrain is observed. Further asymmetry leads to the DSW implosion regime that is effectively described by a pair of coupled nonlinear Schr{o}dinger equations. The complex interplay between nonlocality, nonlinearity and dispersion in the BBM equation underlies the rich variety of nonclassical dispersive hydrodynamic solutions to the dispersive Riemann problem.
New two-component vector breather solution of the modified Benjamin-Bona-Mahony (MBBM) equation is considered. Using the generalized perturbation reduction method the MBBM equation is reduced to the coupled nonlinear Schrodinger equations for auxilia
We prove the existence of a compact random attractor for the stochastic Benjamin-Bona-Mahony Equation defined on an unbounded domain. This random attractor is invariant and attracts every pulled-back tempered random set under the forward flow. The as
We examine the effect of dissipation on traveling waves in nonlinear dispersive systems modeled by Benjamin- Bona- Mahony (BBM)-like equations. In the absence of dissipation the BBM-like equations are found to support soliton and compacton/anticompac
We develop a general approach to the description of dispersive shock waves (DSWs) for a class of nonlinear wave equations with a nonlocal Benjamin-Ono type dispersion term involving the Hilbert transform. Integrability of the governing equation is no
We consider two physically and mathematically distinct regularization mechanisms of scalar hyperbolic conservation laws. When the flux is convex, the combination of diffusion and dispersion are known to give rise to monotonic and oscillatory travelin