ﻻ يوجد ملخص باللغة العربية
Recent studies show that accretion flows around weakly magnetic Neutron Stars undergo multiple shocks, before reaching the surface of the star, which contribute to the spectral and timing variabilities observed in the X-Rays. Here, we report, for the first time, the spectral properties of a unified model of shocked accretion flows around Neutron Stars, based on the Two-Component Advective Flow paradigm. We compare our theoretical results with the X-Ray spectral features of Z and Atoll sources, across different states. We also fit RXTE/PCA spectra of Sco X-1 and 4U 1705-44 to show the potential application of this new model.
3D MHD simulation of accretion onto neutron stars have shown in the last few years that the footprint (hotspot) of the accretion flow changes with time. Two different kinds of accretion, namely the funnel flow and the equatorial accretion produced by
The crust of accreting neutron stars plays a central role in many different observational phenomena. In these stars, heavy elements produced by H-He burning in the rapid proton capture (rp-) process continually freeze to form new crust. In this paper
The flow of a matter, accreting onto a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of t
{We investigate the coherence of the twin kilohertz quasi-periodic oscillations (kHz QPOs) in the low-mass X-ray binary (LMXB) theoretically. The profile of upper kHz QPO, interpreted as Keplerian frequency, is ascribed to the radial extent of the kH
Measuring the spin of Accreting Neutron Stars is important because it can provide constraints on the Equation of State of ultra-dense matter. Particularly crucial to our physical understanding is the discovery of sub-millisecond pulsars, because this