ﻻ يوجد ملخص باللغة العربية
We theoretically investigate the evolution of the peak height of an energy resolved electronic wave-packets ballistically propagating along integer quantum Hall edge channels at filling factor $ u=2$. This is ultimately related to the elastic scattering amplitude for the fermionic excitations evaluated at different injection energy. We investigate this quantity assuming a short range capacitive coupling between the edges. Moreover, we also take into account phenomenologically the possibility of energy dissipation towards additional degrees of freedom both linear and quadratic in the injection energy. Comparing with recent experimental data, we rule out the non-dissipative case as well a quadratic dependence of the dissipation, indicating a linear energy loss rate as the best candidate to describe the behavior of the quasi-particle peak at short enough propagation lengths.
A theoretical study of the single electron coherence properties of Lorentzian and rectangular pulses is presented. By combining bosonization and the Floquet scattering approach, the effect of interactions on a periodic source of voltage pulses is com
Charge equilibration between quantum-Hall edge states can be studied to reveal geometric structure of edge channels not only in the integer quantum Hall (IQH) regime but also in the fractional quantum Hall (FQH) regime particularly for hole-conjugate
Since the charged mode is much faster than the neutral modes on quantum Hall edges at large filling factors, the edge may remain out of equilibrium in thermal conductance experiments. This sheds light on the observed imperfect quantization of the the
A highly non-thermal electron distribution is generated when quantum Hall edge states originating from sources at different potentials meet at a quantum point contact. The relaxation of this distribution to a stationary form as a function of distance
We report time-of-flight measurements on electrons travelling in quantum-Hall edge states. Hot-electron wave packets are emitted one per cycle into edge states formed along a depleted sample boundary. The electron arrival time is detected by driving