Let $Sigma$ be a hyperbolic surface. We study the set of curves on $Sigma$ of a given type, i.e. in the mapping class group orbit of some fixed but otherwise arbitrary $gamma_0$. For example, in the particular case that $Sigma$ is a once-punctured to
rus, we prove that the cardinality of the set of curves of type $gamma_0$ and of at most length $L$ is asymptotic to $L^2$ times a constant.
We prove a quantitative estimate, with a power saving error term, for the number of simple closed geodesics of length at most $L$ on a compact surface equipped with a Riemannian metric of negative curvature. The proof relies on the exponential mixing rate for the Teichm{u}ller geodesic flow.
Let $gamma_0$ be a curve on a surface $Sigma$ of genus $g$ and with $r$ boundary components and let $pi_1(Sigma)curvearrowright X$ be a discrete and cocompact action on some metric space. We study the asymptotic behavior of the number of curves $gamm
a$ of type $gamma_0$ with translation length at most $L$ on $X$. For example, as an application, we derive that for any finite generating set $S$ of $pi_1(Sigma)$ the limit $$lim_{Ltoinfty}frac 1{L^{6g-6+2r}}{gammatext{ of type }gamma_0text{ with }Stext{-translation length}le L}$$ exists and is positive. The main new technical tool is that the function which associates to each curve its stable length with respect to the action on $X$ extends to a (unique) continuous and homogenous function on the space of currents. We prove that this is indeed the case for any action of a torsion free hyperbolic group.
By use of H. C. Wangs bound on the radius of a ball embedded in the fundamental domain of a lattice of a semisimple Lie group, we construct an explicit lower bound for the volume of a quaternionic hyperbolic orbifold that depends only on dimension.
The minimal stratum in Prym loci have been the first source of infinitely many primitive, but not algebraically primitive Teichmueller curves. We show that the stratum Prym(2,1,1) contains no such Teichmueller curve and the stratum Prym(2,2) at most
92 such Teichmueller curves. This complements the recent progress establishing general -- but non-effective -- methods to prove finiteness results for Teichmueller curves and serves as proof of concept how to use the torsion condition in the non-algebraically primitive case.