ﻻ يوجد ملخص باللغة العربية
Simulating and predicting multiscale problems that couple multiple physics and dynamics across many orders of spatiotemporal scales is a great challenge that has not been investigated systematically by deep neural networks (DNNs). Herein, we develop a framework based on operator regression, the so-called deep operator network (DeepONet), with the long term objective to simplify multiscale modeling by avoiding the fragile and time-consuming hand-shaking interface algorithms for stitching together heterogeneous descriptions of multiscale phenomena. To this end, as a first step, we investigate if a DeepONet can learn the dynamics of different scale regimes, one at the deterministic macroscale and the other at the stochastic microscale regime with inherent thermal fluctuations. Specifically, we test the effectiveness and accuracy of DeepONet in predicting multirate bubble growth dynamics, which is described by a Rayleigh-Plesset (R-P) equation at the macroscale and modeled as a stochastic nucleation and cavitation process at the microscale by dissipative particle dynamics (DPD). Taken together, our findings demonstrate that DeepONets can be employed to unify the macroscale and microscale models of the multirate bubble growth problem, hence providing new insight into the role of operator regression via DNNs in tackling realistic multiscale problems and in simplifying modeling with heterogeneous descriptions.
We study the problem of predicting rare critical transition events for a class of slow-fast nonlinear dynamical systems. The state of the system of interest is described by a slow process, whereas a faster process drives its evolution and induces cri
Determining the dynamics of the expectation values for operators acting on a quantum many-body (QMB) system is a challenging task. Matrix product states (MPS) have traditionally been the go-to models for these systems because calculating expectation
The identification of non-signal events is a major hurdle to overcome for bubble chamber dark matter experiments such as PICO-60. The current practice of manually developing a discriminator function to eliminate background events is difficult when av
In this work, we develop a combined convolutional neural networks (CNNs) and finite element method (FEM) to examine the effective thermal properties of composite phase change materials (CPCMs) consisting of paraffin and copper foam. In this approach,
A new self-learning algorithm for accelerated dynamics, reconnaissance metadynamics, is proposed that is able to work with a very large number of collective coordinates. Acceleration of the dynamics is achieved by constructing a bias potential in ter