ترغب بنشر مسار تعليمي؟ اضغط هنا

Progress on the UV-VIS arm of SOXS

71   0   0.0 ( 0 )
 نشر من قبل Adam Rubin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present our progress on the UV-VIS arm of Son Of X-Shooter (SOXS), a new spectrograph for the NTT. Our design splits the spectral band into four sub-bands that are imaged onto a single detector. Each band uses an optimized high efficiency grating that operates in 1st order (m=1). In our previous paper we presented the concept and preliminary design. SOXS passed a Final Design Review in July 2018 and is well into the construction phase. Here we present the final design, performances of key manufactured elements, and the progress in the assembly. Based on the as-built elements, the expected throughput of the visual arm will be >55%. This paper is accompanied by a series of contributions describing the progress made on the SOXS instrument.



قيم البحث

اقرأ أيضاً

SOXS will be a unique spectroscopic facility for the ESO NTT telescope able to cover the optical and NIR bands thanks to two different arms: the UV-VIS (350-850 nm), and the NIR (800-1800 nm). In this article, we describe the design of the visible ca mera cryostat and the architecture of the acquisition system. The UV-VIS detector system is based on a e2v CCD 44-82, a custom detector head coupled with the ESO continuous ow cryostats (CFC) cooling system and the NGC CCD controller developed by ESO. This paper outlines the status of the system and describes the design of the different parts that made up the UV-VIS arm and is accompanied by a series of contributions describing the SOXS design solutions.
SOXS will be the new spectroscopic facility for the ESO NTT telescope able to cover the optical and NIR bands by using two different arms: the UV-VIS (350-850 nm), and the NIR (800-2000 nm). In this article, we describe the development status of the visible camera cryostat, the architecture of the acquisition system and the progress in the electronic design. The UV-VIS detector system is based on a CCD detector 44-82 from e2v, a custom detector head, coupled with the ESO continuous flow cryostats (CFC), a custom cooling system, based on a Programmable Logic Controller (PLC), and the New General Controller (NGC) developed by ESO. This paper outlines the development status of the system, describes the design of the different parts that make up the UV-VIS arm and is accompanied by a series of information describing the SOXS design solutions in the mechanics and in the electronics parts. The first tests of the detector system with the UV-VIS camera will be shown.
The forthcoming SOXS (Son Of X-Shooter) will be a new spectroscopic facility for the ESO New Technology Telescope in La Silla, focused on transient events and able to cover both the UV-VIS and NIR bands. The instrument passed the Final Design Review in 2018 and is currently in manufacturing and integration phase. This paper is focused on the assembly and testing of the instrument control electronics, which will manage all the motorized functions, alarms, sensors, and electric interlocks. The electronics is hosted in two main control cabinets, divided in several subracks that are assembled to ensure easy accessibility and transportability, to simplify test, integration and maintenance. Both racks are equipped with independent power supply distribution and have their own integrated cooling systems. This paper shows the assembly strategy, reports on the development status and describes the tests performed to verify the system before the integration into the whole instrument.
We present here the development status of the NIR spectrograph of the Son Of X-Shooter (SOXS) instrument, for the ESO/NTT telescope at La Silla (Chile). SOXS is a R~4,500 mean resolution spectrograph, with a simultaneously coverage from about 0.35 to 2.00 micron. It will be mounted at the Nasmyth focus of the NTT. The two UV-VIS-NIR wavelength ranges will be covered by two separated arms. The NIR spectrograph is a fully cryogenic echelle-dispersed spectrograph, working in the range 0.80-2.00 micron, equipped with a Hawaii H2RG IR array from Teledyne. The whole spectrograph will be cooled down to about 150 K (but the array at 40 K), to lower the thermal background, and equipped with a thermal filter to block any thermal radiation above 2.0 micron. In this work, we will show the advanced phase of integration of the NIR spectrograph.
The SOXS is a dual-arm spectrograph (UV-VIS & NIR) and AC due to mounted on the ESO 3.6m NTT in La Silla. Designed to simultaneously cover the optical and NIR wavelength range from 350-2050 nm, the instrument will be dedicated to the study of transie nt and variable events with many Target of Opportunity requests expected. The goal of the SOXS Data Reduction pipeline is to use calibration data to remove all instrument signatures from the SOXS scientific data frames for each of the supported instrument modes, convert this data into physical units and deliver them with their associated error bars to the ESO SAF as Phase 3 compliant science data products, all within 30 minutes. The primary reduced product will be a detrended, wavelength and flux calibrated, telluric corrected 1D spectrum with UV-VIS + NIR arms stitched together. The pipeline will also generate QC metrics to monitor telescope, instrument and detector health. The pipeline is written in Python 3 and has been built with an agile development philosophy that includes adaptive planning and evolutionary development. The pipeline is to be used by the SOXS consortium and the general user community that may want to perform tailored processing of SOXS data. Test driven development has been used throughout the build using `extreme mock data. We aim for the pipeline to be easy to install and extensively and clearly documented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا