ترغب بنشر مسار تعليمي؟ اضغط هنا

Interplay of crystal thickness and in-plane anisotropy and evolution of quasi-one dimensional electronic character in ReSe$_{2}$

69   0   0.0 ( 0 )
 نشر من قبل Daniel Wolverson
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the valence band structure of ReSe$_{2}$ crystals with varying thickness down to a single layer using nanoscale angle-resolved photoemission spectroscopy and density functional theory. The width of the top valence band in the direction perpendicular to the rhenium chains decreases with decreasing number of layers, from 280 meV for the bulk to 61 meV for monolayer. This demonstrates increase of in-plane anisotropy induced by changes in the interlayer coupling and suggests progressively more one-dimensional character of electronic states in few-layer rhenium dichalcogenides.

قيم البحث

اقرأ أيضاً

Out-of-plane vibrations are considered as the dominant factor limiting the intrinsic carrier mobility of suspended two-dimensional materials at low carrier concentrations. Anharmonic coupling between in-plane and flexural phonon modes is usually excl uded from the consideration. Here we present a theory for the electron-phonon scattering, in which the anharmonic coupling between acoustic phonons is systematically taken into account. Our theory is applied to the typical group V two-dimensional semiconductors: hexagonal phosphorus, arsenic, and antimony. We find that the role of the flexural modes is essentially suppressed by their coupling with in-plane modes. At dopings lower than 10$^{12}$ cm$^{-2}$ the mobility reduction does not exceed 30%, being almost independent of the concentration. Our findings suggest that compared to in-plane phonons, flexural phonons are considerably less important in the electronic transport of two-dimensional semiconductors, even at low carrier concentrations.
Recently, intriguing physical properties have been unraveled in anisotropic layered semiconductors with the in-plane anisotropy often originates directly from the low crystallographic symmetry. However, little has been known about the systems where t he size effect dominates the anisotropy of electronic band structures. Here, applying both experiment and theory, we show that the anisotropic energy bands of monoclinic gallium telluride (GaTe) are determined by a strong bulk-surface interaction rather than geometric factors. Bulk electronic states are found to be the major contribution to the highest valence band, whose anisotropy is yet immune to surface doping by potassium atoms. Further analysis indicates the weakened bulk-surface interaction gives rise to an inverse anisotropy of hole effective masses and the strong interlayer coupling induces a direct-indirect-direct band gap transition at transfer from mono- to few-layer GaTe. Our results thus pave the way to future applications of anisotropic layered semiconductors in nanoelectronics and optoelectronics.
The structural phase transitions of single crystal TiO2-B nanoribbons were investigated in-situ at high-pressure using the synchrotron X-ray diffraction and the Raman scattering. Our results have shown a pressure-induced amorphization (PIA) occurred in TiO2-B nanoribbons upon compression, resulting in a high density amorphous (HDA) form related to the baddeleyite structure. Upon decompression, the HDA form transforms to a low density amorphous (LDA) form while the samples still maintain their pristine nanoribbon shape. HRTEM imaging reveals that the LDA phase has an {alpha}-PbO2 structure with short range order. We propose a homogeneous nucleation mechanism to explain the pressure-induced amorphous phase transitions in the TiO2-B nanoribbons. Our study demonstrates for the first time that PIA and polyamorphism occurred in the one-dimensional (1D) TiO2 nanomaterials and provides a new method for preparing 1D amorphous nanomaterials from crystalline nanomaterials.
The anisotropic nature of the new two-dimensional (2D) material phosphorene, in contrast to other 2D materials such as graphene and transition metal dichalcogenide (TMD) semiconductors, allows excitons to be confined in a quasi-one-dimensional (1D) s pace predicted in theory, leading to remarkable phenomena arising from the reduced dimensionality and screening. Here, we report a trion (charged exciton) binding energy of 190 meV in few-layer phosphorene at room temperature, which is nearly one to two orders of magnitude larger than those in 2D TMD semiconductors (20-30 meV) and quasi-2D quantum wells (1-5 meV). Such a large binding energy has only been observed in truly 1D materials such as carbon nanotubes, whose optoelectronic applications have been severely hurdled by their intrinsically small optical cross-sections. Phosphorene offers an elegant way to overcome this hurdle by enabling quasi-1D excitonic and trionic behaviors in a large 2D area, allowing optoelectronic integration. We experimentally validated the quasi-1D nature of excitonic and trionic dynamics in phospherene by demonstrating completely linearly polarized light emission from excitons and trions. The implications of the extraordinarily large trion binding energy in a higher-than-one-dimensional material are far-reaching. It provides a room-temperature 2D platform to observe the fundamental many-body interactions in the quasi-1D region. The strong photoluminescence emission in phosphorene has been electrically tuned over a large spectral range at room temperature, which opens a new route for tunable light sources.
Using ab initio methods based on density functional theory, the electronic and magnetic structure of layered hexagonal NbSe$_{2}$ is studied. In the case of single-layer NbSe$_{2}$ it is found that, for all the functionals considered, the magnetic so lution is lower in energy than the non-magnetic solution. The magnetic ground-state is ferrimagnetic with a magnetic moment of 1.09 $mu_{B}$ at the Nb atoms and a magnetic moment of 0.05 $mu_{B}$, in the opposite direction, at the Se atoms. Our calculations show that single-layer NbSe$_{2}$ does not display a charge density wave instability unless a graphene layer is considered as a substrate. Then, two kinds of 3$times$3 charge density waves are found, which are observed in our STM experiments. This suggest that the driving force of charge instabilities in NbSe$_{2}$ differ in bulk and in the single-layer limit. Our work sets magnetism into play in this highly-correlated 2D material, which is crucial to understand the formation mechanisms of 2D superconductivity and charge density wave order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا