ترغب بنشر مسار تعليمي؟ اضغط هنا

Electroweak effective theory and beyond Standard Model resonances

66   0   0.0 ( 0 )
 نشر من قبل Juan Jose Sanz-Cillero
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a non-linear realization of the electroweak symmetry-breaking pattern $SU(2)_Ltimes SU(2)_R/SU(2)_{L+R}$ to construct a low-energy effective theory, later extended by the inclusion of heavy new-physics resonances. After assuming appropriate high-energy constraints given by Weinberg sum-rules and the asymptotic behaviour of form-factors, we obtain relations between resonance masses and some low-energy effective couplings. These predictions are compared with current experimental data and some resonance mass bounds are inferred.

قيم البحث

اقرأ أيضاً

Electroweak baryogenesis is a simple and attractive candidate mechanism for generating the observed baryon asymmetry in the Universe. Its viability is sometimes investigated in terms of an effective field theory of the Standard Model involving higher dimension operators. We investigate the validity of such an effective field theory approach to the problem of identifying electroweak phase transitions strong enough for electroweak baryogenesis to be successful. We identify and discuss some pitfalls of this approach due to the modest hierarchy between mass scales of heavy degrees or freedom and the Higgs, and the possibility of dimensionful couplings violating the decoupling between light and heavy degrees of freedom.
80 - L. Bellagamba 2006
We summarize the recent results on electroweak physics and physics beyond the Standard Model that have been presented at the XIV International Workshop on Deep Inelastic Scattering 2006.
In the light of the mass gap between Standard Model (SM) states and possible new particles, effective field theories are a suitable approach. We take on the non-linear realization of the electroweak symmetry breaking: the electroweak effective theory (EWET), also known as Higgs effective field theory (HEFT) or electroweak chiral Lagrangian (EWChL). At higher scales we consider a resonance electroweak Lagrangian, coupling SM fields to resonances. Integrating out these resonances and assuming a well-behaved high-energy behavior, some of the bosonic low-energy constants are determined or constrained in terms of resonance masses. Present experimental bounds on these low-energy constants allow us to push the resonance mass scale to the TeV range, $M_R geq 2,$TeV, in good agreement with previous estimations.
184 - J. de Blas 2013
We briefly review the global Standard Model fit to electroweak precision data, and discuss the status of electroweak constraints on new interactions. We follow a general effective Lagrangian approach to obtain model-independent limits on the dimensio n-six operators, as well as on several common new physics extensions.
We construct an effective field theory describing the decays of a heavy vector resonance $V$ into Standard Model particles. The effective theory is built using an extension of Soft-Collinear Effective Theory called SCET$_{rm BSM}$, which provides a r igorous framework for parameterizing decay matrix elements with manifest power counting in the ratio of the electroweak scale and the mass of the resonance, $lambdasim v/m_V$. Using the renormalization-group evolution of the couplings in the effective Lagrangian, large logarithms associated with this scale ratio can be resummed to all orders. We consider in detail the two-body decays of a heavy $Z$ boson and of a Kaluza-Klein gluon at leading and subleading order in $lambda$. We illustrate the matching onto SCET$_{rm BSM}$ with a concrete example of a UV-complete new-physics model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا