ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring the viscosity of dark matter with strongly lensed gravitational waves

74   0   0.0 ( 0 )
 نشر من قبل Shuo Cao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the strongly lensed gravitational waves (GWs) from compact binary coalescence, we propose a new strategy to examine the fluid shear viscosity of dark matter (DM) in the gravitational wave domain, i.e., whether a GW experiences the damping effect when it propagates in DM fluid with nonzero shear viscosity. By assuming that the dark matter self-scatterings are efficient enough for the hydrodynamic description to be valid, our results demonstrate that future ground-based Einstein Telescope (ET) and satellite GW observatory (Big Bang Observer; BBO) may succeed in detecting any dark matter self-interactions at the scales of galaxies and clusters.

قيم البحث

اقرأ أيضاً

Since their serendipitous discovery, Fast Radio Bursts (FRBs) have garnered a great deal of attention from both observers and theorists. A new class of radio telescopes with wide fields of view have enabled a rapid accumulation of FRB observations, c onfirming that FRBs originate from cosmological distances. The high occurrence rate of FRBs and the development of new instruments to observe them create opportunities for FRBs to be utilized for a host of astrophysical and cosmological studies. We focus on the rare, and as yet undetected, subset of FRBs that undergo repeated bursts and are strongly gravitationally lensed by intervening structure. An extremely precise timing of burst arrival times is possible for strongly lensed repeating FRBs, and we show how this timing precision enables the search for long wavelength gravitational waves, including those sourced by supermassive black hole binary systems. The timing of burst arrival for strongly lensed repeating FRBs is sensitive to gravitational wave sources near the FRB host galaxy, which may lie at cosmological distances and would therefore be extremely challenging to detect by other means. Timing of strongly lensed FRBs can also be combined with pulsar timing array data to search for correlated time delays characteristic of gravitational waves passing through the Earth.
The analysis of optical images of galaxy-galaxy strong gravitational lensing systems can provide important information about the distribution of dark matter at small scales. However, the modeling and statistical analysis of these images is extraordin arily complex, bringing together source image and main lens reconstruction, hyper-parameter optimization, and the marginalization over small-scale structure realizations. We present here a new analysis pipeline that tackles these diverse challenges by bringing together many recent machine learning developments in one coherent approach, including variational inference, Gaussian processes, differentiable probabilistic programming, and neural likelihood-to-evidence ratio estimation. Our pipeline enables: (a) fast reconstruction of the source image and lens mass distribution, (b) variational estimation of uncertainties, (c) efficient optimization of source regularization and other hyperparameters, and (d) marginalization over stochastic model components like the distribution of substructure. We present here preliminary results that demonstrate the validity of our approach.
Large dark matter overdensities can form around black holes of astrophysical and primordial origin as they form and grow. This dark dress inevitably affects the dynamical evolution of binary systems, and induces a dephasing in the gravitational wavef orm that can be probed with future interferometers. In this paper, we introduce a new analytical model to rapidly compute gravitational waveforms in presence of an evolving dark matter distribution. We then present a Bayesian analysis determining when dressed black hole binaries can be distinguished from GR-in-vacuum ones and how well their parameters can be measured, along with how close they must be to be detectable by the planned Laser Interferometer Space Antenna (LISA). We show that LISA can definitively distinguish dark dresses from standard binaries and characterize the dark matter environments around astrophysical and primordial black holes for a wide range of model parameters. Our approach can be generalized to assess the prospects for detecting, classifying, and characterizing other environmental effects in gravitational wave physics.
We consider gravitational wave (GW) sources with an associated electromagnetic (EM) counterpart, and analyze the time delay between both signals in the presence of lensing. If GWs have wavelengths comparable to the Schwarzschild radius of astrophysic al lenses, they must be treated with wave optics, whereas EM waves are typically well within the approximation of geometric optics. With concrete examples, we confirm that the GW signal never arrives before its EM counterpart, if both are emitted at the same time. However, during the inspiral of a binary, peaks of the GW waveform can arrive before their EM counterpart. We stress this is only an apparent superluminality since the GW waveform is both distorted and further delayed with respect to light. In any case, measuring the multi-messenger time delay and correctly interpreting it has important implications for unveiling the distribution of lenses, testing the nature of gravity, and probing the cosmological expansion history.
92 - Ely D. Kovetz 2017
Primordial black holes (PBHs) have long been suggested as a candidate for making up some or all of the dark matter in the Universe. Most of the theoretically possible mass range for PBH dark matter has been ruled out with various null observations of expected signatures of their interaction with standard astrophysical objects. However, current constraints are significantly less robust in the 20 M_sun < M_PBH < 100 M_sun mass window, which has received much attention recently, following the detection of merging black holes with estimated masses of ~30 M_sun by LIGO and the suggestion that these could be black holes formed in the early Universe. We consider the potential of advanced LIGO (aLIGO) operating at design sensitivity to probe this mass range by looking for peaks in the mass spectrum of detected events. To quantify the background, which is due to black holes that are formed from dying stars, we model the shape of the stellar-black-hole mass function and calibrate its amplitude to match the O1 results. Adopting very conservative assumptions about the PBH and stellar-black-hole merger rates, we show that ~5 years of aLIGO data can be used to detect a contribution of >20 M_sun PBHs to dark matter down to f_PBH<0.5 at >99.9% confidence level. Combined with other probes that already suggest tension with f_PBH=1, the obtainable independent limits from aLIGO will thus enable a firm test of the scenario that PBHs make up all of dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا