ﻻ يوجد ملخص باللغة العربية
Spin-orbit torque (SOT) driven deterministic control of the magnetization state of a magnet with perpendicular magnetic anisotropy (PMA) is key to next generation spintronic applications including non-volatile, ultrafast, and energy efficient data storage devices. But, field-free deterministic switching of perpendicular magnetization remains a challenge because it requires an out-of-plane anti-damping torque, which is not allowed in conventional spin source materials such as heavy metals (HM) and topological insulators due to the systems symmetry. The exploitation of low-crystal symmetries in emergent quantum materials offers a unique approach to achieve SOTs with unconventional forms. Here, we report the first experimental realization of field-free deterministic magnetic switching of a perpendicularly polarized van der Waals (vdW) magnet employing an out-of-plane anti-damping SOT generated in layered WTe2 which is a low-crystal symmetry quantum material. The numerical simulations confirm that out-of-plane antidamping torque in WTe2 is responsible for the observed magnetization switching in the perpendicular direction.
Recent discoveries regarding current-induced spin-orbit torques produced by heavy-metal/ferromagnet and topological-insulator/ferromagnet bilayers provide the potential for dramatically-improved efficiency in the manipulation of magnetic devices. How
We study current-induced torques in WTe2/permalloy bilayers as a function of WTe2 thickness. We measure the torques using both second-harmonic Hall and spin-torque ferromagnetic resonance measurements for samples with WTe2 thicknesses that span from
We report time-resolved measurements of magnetization switching by spin-orbit torques in the absence of an external magnetic field in perpendicularly magnetized magnetic tunnel junctions (MTJ). Field-free switching is enabled by the dipolar field of
Symmetry breaking is a characteristic to determine which branch of a bifurcation system follows upon crossing a critical point. Specifically, in spin-orbit torque (SOT) devices, a fundamental question arises: how to break the symmetry of the perpendi
Spin-orbit interaction (SOI) couples charge and spin transport, enabling electrical control of magnetization. A quintessential example of SOI-induced transport is the anomalous Hall effect (AHE), first observed in 1880, in which an electric current p