ﻻ يوجد ملخص باللغة العربية
We present Non-Rigid Neural Radiance Fields (NR-NeRF), a reconstruction and novel view synthesis approach for general non-rigid dynamic scenes. Our approach takes RGB images of a dynamic scene as input (e.g., from a monocular video recording), and creates a high-quality space-time geometry and appearance representation. We show that a single handheld consumer-grade camera is sufficient to synthesize sophisticated renderings of a dynamic scene from novel virtual camera views, e.g. a `bullet-time video effect. NR-NeRF disentangles the dynamic scene into a canonical volume and its deformation. Scene deformation is implemented as ray bending, where straight rays are deformed non-rigidly. We also propose a novel rigidity network to better constrain rigid regions of the scene, leading to more stable results. The ray bending and rigidity network are trained without explicit supervision. Our formulation enables dense correspondence estimation across views and time, and compelling video editing applications such as motion exaggeration. Our code will be open sourced.
We present dynamic neural radiance fields for modeling the appearance and dynamics of a human face. Digitally modeling and reconstructing a talking human is a key building-block for a variety of applications. Especially, for telepresence applications
We present an algorithm for generating novel views at arbitrary viewpoints and any input time step given a monocular video of a dynamic scene. Our work builds upon recent advances in neural implicit representation and uses continuous and differentiab
Neural volumetric representations such as Neural Radiance Fields (NeRF) have emerged as a compelling technique for learning to represent 3D scenes from images with the goal of rendering photorealistic images of the scene from unobserved viewpoints. H
We present a method that achieves state-of-the-art results for synthesizing novel views of complex scenes by optimizing an underlying continuous volumetric scene function using a sparse set of input views. Our algorithm represents a scene using a ful
Recent approaches to render photorealistic views from a limited set of photographs have pushed the boundaries of our interactions with pictures of static scenes. The ability to recreate moments, that is, time-varying sequences, is perhaps an even mor