ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum-mechanical stability analysis of the classical catenoid

145   0   0.0 ( 0 )
 نشر من قبل Per Moosavi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove the stability (instability) of the outer (inner) catenoid connecting two concentric circular rings, and explicitly construct the unstable mode of the inner catenoid, by studying the spectrum of an exactly solvable one-dimensional Schrodinger operator with an asymmetric Darboux-Poschl-Teller potential.



قيم البحث

اقرأ أيضاً

A Poisson realization of the simple real Lie algebra $mathfrak {so}^*(4n)$ on the phase space of each $mathrm {Sp}(1)$-Kepler problem is exhibited. As a consequence one obtains the Laplace-Runge-Lenz vector for each classical $mathrm{Sp}(1)$-Kepler p roblem. The verification of these Poisson realizations is greatly simplified via an idea due to A. Weinstein. The totality of these Poisson realizations is shown to be equivalent to the canonical Poisson realization of $mathfrak {so}^*(4n)$ on the Poisson manifold $T^*mathbb H_*^n/mathrm{Sp}(1)$. (Here $mathbb H_*^n:=mathbb H^nbackslash {0}$ and the Hamiltonian action of $mathrm{Sp}(1)$ on $T^*mathbb H_*^n$ is induced from the natural right action of $mathrm{Sp}(1)$ on $mathbb H_*^n$. )
We perform the study of the stability of the Lorenz system by using the Jacobi stability analysis, or the Kosambi-Cartan-Chern (KCC) theory. The Lorenz model plays an important role for understanding hydrodynamic instabilities and the nature of the t urbulence, also representing a non-trivial testing object for studying non-linear effects. The KCC theory represents a powerful mathematical method for the analysis of dynamical systems. In this approach we describe the evolution of the Lorenz system in geometric terms, by considering it as a geodesic in a Finsler space. By associating a non-linear connection and a Berwald type connection, five geometrical invariants are obtained, with the second invariant giving the Jacobi stability of the system. The Jacobi (in)stability is a natural generalization of the (in)stability of the geodesic flow on a differentiable manifold endowed with a metric (Riemannian or Finslerian) to the non-metric setting. In order to apply the KCC theory we reformulate the Lorenz system as a set of two second order non-linear differential equations. The geometric invariants associated to this system (nonlinear and Berwald connections), and the deviation curvature tensor, as well as its eigenvalues, are explicitly obtained. The Jacobi stability of the equilibrium points of the Lorenz system is studied, and the condition of the stability of the equilibrium points is obtained. Finally, we consider the time evolution of the components of the deviation vector near the equilibrium points.
In this paper we study the convex cone of not necessarily smooth measures satisfying the classical KMS condition within the context of Poisson geometry. We discuss the general properties of KMS measures and its relation with the underlying Poisson ge ometry in analogy to Weinsteins seminal work in the smooth case. Moreover, by generalizing results from the symplectic case, we focus on the case of $b$-Poisson manifolds, where we provide a complete characterization of the convex cone of KMS measures.
In this paper, we study the Dirac equation for an electron constrained to move on a catenoid surface. We decoupled the two components of the spinor and obtained two Klein-Gordon-like equations. Analytical solutions were obtained using supersymmetric quantum mechanics for two cases, namely, the constant Fermi velocity and the position-dependent Fermi velocity cases.
The formulation of Geometric Quantization contains several axioms and assumptions. We show that for real polarizations we can generalize the standard geometric quantization procedure by introducing an arbitrary connection on the polarization bundle. The existence of reducible quantum structures leads to considering the class of Liouville symplectic manifolds. Our main application of this modified geometric quantization scheme is to Quantum Mechanics on Riemannian manifolds. With this method we obtain an energy operator without the scalar curvature term that appears in the standard formulation, thus agreeing with the usual expression found in the Physics literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا