ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular theory of electrostatic collapse of dipolar polymer gels

101   0   0.0 ( 0 )
 نشر من قبل Yury Budkov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a new quantitative molecular theory of liquid-phase dipolar polymer gels. We model monomer units of the polymer network as a couple of charged sites separated by a fluctuating distance. For the first time, within the random phase approximation, we have obtained an analytical expression for the electrostatic free energy of the dipolar gel. Depending on the coupling parameter of dipole-dipole interactions and the ratio of the dipole length to the subchain Kuhn length, we describe the gel collapse induced by electrostatic interactions in the good solvent regime as a first-order phase transition. This transition can be realized at reasonable physical parameters of the system (temperature, solvent dielectric constant, and dipole moment of monomer units). The obtained results could be potentially used in modern applications of stimuli-responsive polymer gels and microgels, such as drug delivery, nanoreactors, molecular uptake, coatings, superabsorbents, etc.

قيم البحث

اقرأ أيضاً

Cellulose nanocrystals (CNC) are naturally-derived nanostructures of growing importance for the production of composites having attractive mechanical properties, and offer improved sustainability over purely petroleum-based alternatives. Fabrication of CNC composites typically involves extrusion of CNC suspensions and gels in a variety of solvents, in the presence of additives such as polymers and curing agents. However, most studies so far have focused on aqueous CNC gels, yet the behavior of CNC-polymer gels in organic solvents is important to their wider processability. Here, we study the rheological behavior of composite polymer-CNC gels in dimethylformamide, which include additives for both UV and thermal crosslinking. Using rheometry coupled with in-situ infrared spectroscopy, we show that under external shear, CNC-polymer gels display progressive and irreversible failure of the hydrogen bond network that is responsible for their pronounced elastic properties. In the absence of cross-linking additives, the polymer-CNC gels show negligible recovery upon cessation of flow, while the presence of additives allows the gels to recover via van der Waals interactions. By exploring a broad range of shear history and CNC concentrations, we construct master curves for the temporal evolution of the viscoelastic properties of the polymer-CNC gels, illustrating universality of the observed dynamics with respect to gel composition and flow conditions. We therefore find that polymer-CNC composite gels display a number of the distinctive features of colloidal glasses and, strikingly, that their response to the flow conditions encountered during processing can be tuned by chemical additives. These findings have implications for processing of dense CNC-polymer composites in solvent casting, 3D printing, and other manufacturing techniques.
Forced detachment of a single polymer chain, strongly-adsorbed on a solid substrate, is investigated by two complementary methods: a coarse-grained analytical dynamical model, based on the Onsager stochastic equation, and Molecular Dynamics (MD) simu lations with Langevin thermostat. The suggested approach makes it possible to go beyond the limitations of the conventional Bell-Evans model. We observe a series of characteristic force spikes when the pulling force is measured against the cantilever displacement during detachment at constant velocity $v_c$ (displacement control mode) and find that the average magnitude of this force increases as $v_c$ grows. The probability distributions of the pulling force and the end-monomer distance from the surface at the moment of final detachment are investigated for different adsorption energy $epsilon$ and pulling velocity $v_c$. Our extensive MD-simulations validate and support the main theoretical findings. Moreover, the simulation reveals a novel behavior: for a strong-friction and massive cantilever the force spikes pattern is smeared out at large $v_c$. As a challenging task for experimental bio-polymers sequencing in future we suggest the fabrication of stiff, super-light, nanometer-sized AFM probe.
We investigate the linear viscoelasticity of polymer gels produced by the dispersion of gluten proteins in water:ethanol binary mixtures with various ethanol contents, from pure water to 60% v/v ethanol. We show that the complex viscoelasticity of th e gels exhibits a time/solvent composition superposition principle, demonstrating the self-similarity of the gels produced in different binary solvents. All gels can be regarded as near critical gels with characteristic rheological parameters, elastic plateau and characteristic relaxation time, which are related one to another, as a consequence of self-similarity, and span several orders of magnitude when changing the solvent composition. Thanks to calorimetry and neutron scattering experiments, we evidencea co-solvency effect with a better solvation of the complex polymer-like chains of the gluten proteins as the amount of ethanol increases. Overall the gel viscoelasticity can be accounted for by a unique characteristic length characterizing the crosslink density of the supramolecular network, which is solvent composition-dependent. On a molecular level, these findings could be interpreted as a transition of the supramolecular interactions, mainly H-bonds, from intra- to interchains, which would be facilitated by the disruption of hydrophobic interactions by ethanol molecules. This work provides new insight for tailoring the gelation process of complex polymer gels.
We investigated the viscoelastic properties of colloid-polymer mixtures at intermediate colloid volume fraction and varying polymer concentrations, thereby tuning the attractive interactions. Within the examined range of polymer concentrations, the s amples ranged from fluids to gels. Already in the liquid phase the viscoelastic properties significantly changed when approaching the gelation boundary, indicating the formation of clusters and transient networks. This is supported by an increasing correlation length of the density fluctuations, observed by static light scattering and microscopy. At the same time, the correlation function determined by dynamic light scattering completely decays, indicating the absence of dynamical arrest. Upon increasing the polymer concentration beyond the gelation boundary, the rheological properties changed qualitatively again, now they are consistent with the formation of colloidal gels. Our experimental results, namely the location of the gelation boundary as well as the elastic (storage) and viscous (loss) moduli, are compared to different theoretical models. These include consideration of the escape time as well as predictions for the viscoelastic moduli based on scaling relations and Mode Coupling Theories (MCT).
Shear responsive surfaces offer potential advances in a number of applications. Surface functionalisation using polymer brushes is one route to such properties, particularly in the case of entangled polymers. We report on neutron reflectometry measur ements of polymer brushes in entangled polymer solutions performed under controlled shear, as well as coarse-grained computer simulations corresponding to these interfaces. Here we show a reversible and reproducible collapse of the brushes, increasing with the shear rate. Using two brushes of greatly different chain lengths and grafting densities, we demonstrate that the dynamics responsible for the structural change of the brush are governed by the free chains in solution rather than the brush itself, within the range of parameters examined. The phenomenon of the brush collapse could find applications in the tailoring of nanosensors, and as a way to dynamically control surface friction and adhesion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا