ﻻ يوجد ملخص باللغة العربية
Many $q$-ary stabilizer quantum codes can be constructed from Hermitian self-orthogonal $q^2$-ary linear codes. This result can be generalized to $q^{2 m}$-ary linear codes, $m > 1$. We give a result for easily obtaining quantum codes from that generalization. As a consequence we provide several new binary stabilizer quantum codes which are records according to cite{codet} and new $q$-ary ones, with $q eq 2$, improving others in the literature.
Construction $C^star$ was recently introduced as a generalization of the multilevel Construction C (or Forneys code-formula), such that the coded levels may be dependent. Both constructions do not produce a lattice in general, hence the central idea
The parameters of MDS self-dual codes are completely determined by the code length. In this paper, we utilize generalized Reed-Solomon (GRS) codes and extended GRS codes to construct MDS self-dual (self-orthogonal) codes and MDS almost self-dual code
We present new quantum codes with good parameters which are constructed from self-orthogonal algebraic geometry codes. Our method permits a wide class of curves to be used in the formation of these codes, which greatly extends the class of a previous
In this paper, a criterion of MDS Euclidean self-orthogonal codes is presented. New MDS Euclidean self-dual codes and self-orthogonal codes are constructed via this criterion. In particular, among our constructions, for large square $q$, about $frac{
We obtain a characterization on self-orthogonality for a given binary linear code in terms of the number of column vectors in its generator matrix, which extends the result of Bouyukliev et al. (2006). As an application, we give an algorithmic method