ترغب بنشر مسار تعليمي؟ اضغط هنا

A spectral adjustment for spatial confounding

48   0   0.0 ( 0 )
 نشر من قبل Garritt Page
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Adjusting for an unmeasured confounder is generally an intractable problem, but in the spatial setting it may be possible under certain conditions. In this paper, we derive necessary conditions on the coherence between the treatment variable of interest and the unmeasured confounder that ensure the causal effect of the treatment is estimable. We specify our model and assumptions in the spectral domain to allow for different degrees of confounding at different spatial resolutions. The key assumption that ensures identifiability is that confounding present at global scales dissipates at local scales. We show that this assumption in the spectral domain is equivalent to adjusting for global-scale confounding in the spatial domain by adding a spatially smoothed version of the treatment variable to the mean of the response variable. Within this general framework, we propose a sequence of confounder adjustment methods that range from parametric adjustments based on the Matern coherence function to more robust semi-parametric methods that use smoothing splines. These ideas are applied to areal and geostatistical data for both simulated and real datasets



قيم البحث

اقرأ أيضاً

Spatial models are used in a variety research areas, such as environmental sciences, epidemiology, or physics. A common phenomenon in many spatial regression models is spatial confounding. This phenomenon takes place when spatially indexed covariates modeling the mean of the response are correlated with the spatial random effect. As a result, estimates for regression coefficients of the covariates can be severely biased and interpretation of these is no longer valid. Recent literature has shown that typical solutions for reducing spatial confounding can lead to misleading and counterintuitive results. In this paper, we develop a computationally efficient spatial model in a Bayesian framework integrating novel prior structure that reduces spatial confounding. Starting from the univariate case, we extend our prior structure to case of multiple spatially confounded covariates. In a simulation study, we show that our novel model flexibly detects and reduces spatial confounding in spatial datasets, and it performs better than typically used methods such as restricted spatial regression. These results are promising for any applied researcher who wishes to interpret covariate effects in spatial regression models. As a real data illustration, we study the effect of elevation and temperature on the mean of daily precipitation in Germany.
In employing spatial regression models for counts, we usually meet two issues. First, ignoring the inherent collinearity between covariates and the spatial effect would lead to causal inferences. Second, real count data usually reveal over or under-d ispersion where the classical Poisson model is not appropriate to use. We propose a flexible Bayesian hierarchical modeling approach by joining non-confounding spatial methodology and a newly reconsidered dispersed count modeling from the renewal theory to control the issues. Specifically, we extend the methodology for analyzing spatial count data based on the gamma distribution assumption for waiting times. The model can be formulated as a latent Gaussian model, and consequently, we can carry out the fast computation using the integrated nested Laplace approximation method. We also examine different popular approaches for handling spatial confounding and compare their performances in the presence of dispersion. We use the proposed methodology to analyze a clinical dataset related to stomach cancer incidence in Slovenia and perform a simulation study to understand the proposed approachs merits better.
Bayesian causal inference offers a principled approach to policy evaluation of proposed interventions on mediators or time-varying exposures. We outline a general approach to the estimation of causal quantities for settings with time-varying confound ing, such as exposure-induced mediator-outcome confounders. We further extend this approach to propose two Bayesian data fusion (BDF) methods for unmeasured confounding. Using informative priors on quantities relating to the confounding bias parameters, our methods incorporate data from an external source where the confounder is measured in order to make inferences about causal estimands in the main study population. We present results from a simulation study comparing our data fusion methods to two common frequentist correction methods for unmeasured confounding bias in the mediation setting. We also demonstrate our method with an investigation of the role of stage at cancer diagnosis in contributing to Black-White colorectal cancer survival disparities.
Hierarchical inference in (generalized) regression problems is powerful for finding significant groups or even single covariates, especially in high-dimensional settings where identifiability of the entire regression parameter vector may be ill-posed . The general method proceeds in a fully data-driven and adaptive way from large to small groups or singletons of covariates, depending on the signal strength and the correlation structure of the design matrix. We propose a novel hierarchical multiple testing adjustment that can be used in combination with any significance test for a group of covariates to perform hierarchical inference. Our adjustment passes on the significance level of certain hypotheses that could not be rejected and is shown to guarantee strong control of the familywise error rate. Our method is at least as powerful as a so-called depth-wise hierarchical Bonferroni adjustment. It provides a substantial gain in power over other previously proposed inheritance hierarchical procedures if the underlying alternative hypotheses occur sparsely along a few branches in the tree-structured hierarchy.
Data-driven individualized decision making has recently received increasing research interests. Most existing methods rely on the assumption of no unmeasured confounding, which unfortunately cannot be ensured in practice especially in observational s tudies. Motivated by the recent proposed proximal causal inference, we develop several proximal learning approaches to estimating optimal individualized treatment regimes (ITRs) in the presence of unmeasured confounding. In particular, we establish several identification results for different classes of ITRs, exhibiting the trade-off between the risk of making untestable assumptions and the value function improvement in decision making. Based on these results, we propose several classification-based approaches to finding a variety of restricted in-class optimal ITRs and develop their theoretical properties. The appealing numerical performance of our proposed methods is demonstrated via an extensive simulation study and one real data application.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا