ترغب بنشر مسار تعليمي؟ اضغط هنا

Tempestuous life beyond R_500: X-ray view on the Coma cluster with SRG/eROSITA. I. X-ray morphology, recent merger, and radio halo connection

94   0   0.0 ( 0 )
 نشر من قبل Natalia Lyskova
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This is the first paper in a series of studies of the Coma cluster using the SRG/eROSITA X-ray data obtained in course of the Calibration and Performance Verification observations. The data cover $sim3^circtimes 3^circ$ area around the cluster with a typical exposure time of more than 20 ks. The stability of the instrumental background and operation of the SRG Observatory in the scanning mode provided us with an excellent data set for studies of the diffuse emission up to a distance of $sim 1.5R_{200}$ from the Coma center. In this study, we discuss the rich morphology revealed by the X-ray observations (also in combination with the SZ data) and argue that the most salient features can be naturally explained by a recent (on-going) merger with the NGC 4839 group. In particular, we identify a faint X-ray bridge connecting the group with the cluster, which is convincing proof that NGC 4839 has already crossed the main cluster. The gas in the Coma core went through two shocks, first through the shock driven by NGC 4839 during its first passage through the cluster some Gyr ago, and, more recently, through the mini-accretion shock associated with the gas settling back to quasi-hydrostatic equilibrium in the core. After passing through the primary shock, the gas should spend much of the time in a rarefaction region, where radiative losses of electrons are small, until the gas is compressed again by the mini-accretion shock. Unlike runway merger shocks, the mini-accretion shock does not feature a rarefaction region downstream and, therefore, the radio emission can survive longer. Such a two-stage process might explain the formation of the radio halo in the Coma cluster.

قيم البحث

اقرأ أيضاً

eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the primary instrument on the Spectrum-Roentgen-Gamma (SRG) mission, which was successfully launched on July 13, 2019, from the Baikonour cosmodrome. After the commissioning of the instrument and a subsequent calibration and performance verification phase, eROSITA started a survey of the entire sky on December 13, 2019. By the end of 2023, eight complete scans of the celestial sphere will have been performed, each lasting six months. At the end of this program, the eROSITA all-sky survey in the soft X-ray band (0.2--2.3,keV) will be about 25 times more sensitive than the ROSAT All-Sky Survey, while in the hard band (2.3--8,keV) it will provide the first ever true imaging survey of the sky. The eROSITA design driving science is the detection of large samples of galaxy clusters up to redshifts $z>1$ in order to study the large-scale structure of the universe and test cosmological models including Dark Energy. In addition, eROSITA is expected to yield a sample of a few million AGNs, including obscured objects, revolutionizing our view of the evolution of supermassive black holes. The survey will also provide new insights into a wide range of astrophysical phenomena, including X-ray binaries, active stars, and diffuse emission within the Galaxy. Results from early observations, some of which are presented here, confirm that the performance of the instrument is able to fulfil its scientific promise. With this paper, we aim to give a concise description of the instrument, its performance as measured on ground, its operation in space, and also the first results from in-orbit measurements.
In this note we discuss the possibility of detecting the accompanying X-ray emission from sources of fast radio bursts with the eROSITA telescope onboard the Spektr-RG observatory. It is shown that during four years of the survey program about 300 bu rsts are expected to appear in the field of view of eROSITA. About 1% of them will be detected by ground-based radio telescopes. For a total energy release $sim~10^{46}$~ergs depending on the spectral parameters and absorption in the interstellar and intergalactic media, an X-ray flare can be detected from distances from $sim 1$~Mpc (thermal spectrum with $kT=200$~keV and strong absorption) up to $sim1$~Gpc (power-law spectrum with photon index $Gamma=2 $ and realistic absorption). Thus, eROSITA observations might help to provide important constraints on parameters of sources of fast radio bursts, or may even allow to identify the X-ray transient counterparts, which will help to constrain models of fast radio bursts generation.
(abridged version) We present a detailed spectroscopic and timing analysis of X-ray observations of the bright radio-to-gamma-ray emitting pulsar PSR B0656+14, which were obtained simultaneously with eROSITA and XMM-Newton during the Calibration and Performance Verification phase of the Spektrum-Roentgen-Gamma mission (SRG) for 100 ks. Using XMM-Newton and NICER we firstly established an X-ray ephemeris for the time interval 2015 to 2020, which connects all X-ray observations in this period without cycle count alias and phase shifts. The mean eROSITA spectrum clearly reveals an absorption feature originating from the star at 570 eV with a Gaussian sigma of about 70 eV, tentatively identified earlier in a long XMM-Newton observation (Arumugasamy et al. 2018). A second absorption feature, described here as an absorption edge, occurs at 260-265 eV. It could be of atmospheric or of instrumental origin. These absorption features are superposed on various emission components, phenomenologically described as the sum of hot (120 eV) and cold (65 eV) blackbody components, both of photospheric origin, and a power-law with photon index Gamma=2. The phase-resolved spectroscopy reveals that the Gaussian absorption line at 570 eV is clearly present throughout ~60% of the spin cycle. The visibility of the line strength coincides in phase with the maximum flux of the hot blackbody. We also present three families of model atmospheres: a magnetised atmosphere, a condensed surface, and a mixed model, which were applied to the mean observed spectrum and whose continuum fit the observed data well. The atmosphere model, however, predicts too short distances. For the mixed model, the Gaussian absorption may be interpreted as proton cyclotron absorption in a field as high as 10^14 G, which is significantly higher than that derived from the moderate observed spin-down.
eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the core instrument on the Russian Spektrum-Roentgen-Gamma (SRG) mission which is scheduled for launch in late 2012. eROSITA is fully approved and funded by the German Space Agency DLR and the Max-Planck-Society. The design driving science is the detection of 50 - 100 thousands Clusters of Galaxies up to redshift z ~ 1.3 in order to study the large scale structure in the Universe and test cosmological models, especially Dark Energy. This will be accomplished by an all-sky survey lasting for four years plus a phase of pointed observations. eROSITA consists of seven Wolter-I telescope modules, each equipped with 54 Wolter-I shells having an outer diameter of 360 mm. This would provide and effective area at 1.5 keV of ~ 1500 cm2 and an on axis PSF HEW of 15 which would provide an effective angular resolution of 25-30. In the focus of each mirror module, a fast frame-store pn-CCD will provide a field of view of 1 deg in diameter for an active FOV of ~ 0.83 deg^2. At the time of writing the instrument development is currently in phase C/D.
We report the discovery of X-ray emission from CFHQS J142952+544717, the most distant known radio-loud quasar at z=6.18, on Dec. 10--11, 2019 with the eROSITA telescope on board the SRG satellite during its ongoing all-sky survey. The object was iden tified by cross-matching an intermediate SRG/eROSITA source catalog with the Pan-STARRS1 distant quasar sample at 5.6 < z < 6.7. The measured flux $sim 8 times 10^{-14}$ erg cm$^{-2}$ s$^{-1}$ in the 0.3--2 keV energy band corresponds to an X-ray luminosity of $2.6^{+1.7}_{-1.0}times 10^{46}$ erg s$^{-1}$ in the 2--10 keV rest-frame energy band, which renders CFHQS J142952+544717 the most X-ray luminous quasar ever observed at z > 6. Combining our X-ray measurements with archival and new photometric measurements in other wavebands (radio to optical), we estimate the bolometric luminosity of this quasar at $sim (2$--$3) times 10^{47}$ erg s$^{-1}$. Assuming Eddington limited accretion and isotropic emission, we infer a lower limit on the mass of the supermassive black hole of $sim 2times 10^9 M_odot$. The most salient feature of CFHQS J142952+544717 is its X-ray brightness relative to the optical/UV emission. We argue that it may be linked to its radio-loudness (although the object is not a blazar according to its radio properties), specifically to a contribution of inverse Compton scattering of cosmic microwave background photons off relativistic electrons in the jets. If so, CFHQS J142952+544717 might be the tip of the iceberg of high-z quasars with enhanced X-ray emission, and SRG/eROSITA may find many more such objects during its 4 year all-sky survey.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا