ﻻ يوجد ملخص باللغة العربية
The classic singularity theorems of General Relativity rely on energy conditions that can be violated in semiclassical gravity. Here, we provide motivation for an energy condition obeyed by semiclassical gravity: the smeared null energy condition (SNEC), a proposed bound on the weighted average of the null energy along a finite portion of a null geodesic. We then prove a semiclassical singularity theorem using SNEC as an assumption. This theorem extends the Penrose theorem to semiclassical gravity. We also apply our bound to evaporating black holes and the traversable wormhole of Maldacena-Milekhin-Popov, and comment on the relationship of our results to other proposed semiclassical singularity theorems.
We propose a new bound on the average null energy along a finite portion of a null geodesic. We believe our bound is valid on scales small compared to the radius of curvature in any quantum field theory that is consistently coupled to gravity. If cor
Three very recent articles have claimed that it is possible to, at least in theory, either set up positive energy warp drives satisfying the weak energy condition (WEC), or at the very least, to minimize the WEC violations. These claims are at best i
The static spherically symmetric traversable wormholes are analysed in the Einstein- Cartan theory of gravitation. In particular, we computed the torsion tensor for matter fields with different spin S = 0; 1/2; 1; 3/2. Interestingly, only for certain
The Averaged Null Energy Condition (ANEC) states that the integral along a complete null geodesic of the projection of the stress-energy tensor onto the tangent vector to the geodesic cannot be negative. ANEC can be used to rule out spacetimes with e
We explore the implications of the averaged null energy condition for thermal states of relativistic quantum field theories. A key property of such thermal states is the thermalization length. This lengthscale generalizes the notion of a mean free pa