ﻻ يوجد ملخص باللغة العربية
The Darwin-Howie-Whelan equations are commonly used to describe and simulate the scattering of fast electrons in transmission electron microscopy. They are a system of infinitely many envelope functions, derived from the Schrodinger equation. However, for the simulation of images only a finite set of envelope functions is used, leading to a system of ordinary differential equations in thickness direction of the specimen. We study the mathematical structure of this system and provide error estimates to evaluate the accuracy of special approximations, like the two-beam and the systematic-row approximation.
Explicit formulas for the analytic extensions of the scattering matrix and the time delay of a quasi-one-dimensional discrete Schrodinger operator with a potential of finite support are derived. This includes a careful analysis of the band edge singu
Bohmian mechanics is a non-relativistic quantum theory based on a particle approach. In this paper we study the Schrodinger equation with rapidly oscillating potential and the associated Bohmian trajectory. We prove that the corresponding Bohmian tra
The Fock-Darwin system is analysed from the point of view of its symmetry properties in the quantum and classical frameworks. The quantum Fock-Darwin system is known to have two sets of ladder operators, a fact which guarantees its solvability. We sh
Quantum trajectories are Markov processes that describe the time-evolution of a quantum system undergoing continuous indirect measurement. Mathematically, they are defined as solutions of the so-called Stochastic Schrodinger Equations, which are nonl
We provide a list of explicit eigenfunctions of the trigonometric Calogero-Sutherland Hamiltonian associated to the root system of the exceptional Lie algebra E8. The quantum numbers of these solutions correspond to the first and second order weights of the Lie algebra.