ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Darwin-Howie-Whelan equations for the scattering of fast electrons described by the Schrodinger equation

60   0   0.0 ( 0 )
 نشر من قبل Alexander Mielke
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Darwin-Howie-Whelan equations are commonly used to describe and simulate the scattering of fast electrons in transmission electron microscopy. They are a system of infinitely many envelope functions, derived from the Schrodinger equation. However, for the simulation of images only a finite set of envelope functions is used, leading to a system of ordinary differential equations in thickness direction of the specimen. We study the mathematical structure of this system and provide error estimates to evaluate the accuracy of special approximations, like the two-beam and the systematic-row approximation.



قيم البحث

اقرأ أيضاً

Explicit formulas for the analytic extensions of the scattering matrix and the time delay of a quasi-one-dimensional discrete Schrodinger operator with a potential of finite support are derived. This includes a careful analysis of the band edge singu larities and allows to prove a Levinson-type theorem. The main algebraic tool are the plane wave transfer matrices.
90 - Dandan Li , Jinqiao Duan , Li Lin 2021
Bohmian mechanics is a non-relativistic quantum theory based on a particle approach. In this paper we study the Schrodinger equation with rapidly oscillating potential and the associated Bohmian trajectory. We prove that the corresponding Bohmian tra jectory converges locally in measure, and the limit coincides with the Bohmian trajectory for the effective Schr{o}dinger equation on a finite time interval. This is beneficial for the efficient simulation of the Bohmian trajectories in oscillating potential fields.
The Fock-Darwin system is analysed from the point of view of its symmetry properties in the quantum and classical frameworks. The quantum Fock-Darwin system is known to have two sets of ladder operators, a fact which guarantees its solvability. We sh ow that for rational values of the quotient of two relevant frequencies, this system is superintegrable, the quantum symmetries being responsible for the degeneracy of the energy levels. These symmetries are of higher order and close a polynomial algebra. In the classical case, the ladder operators are replaced by ladder functions and the symmetries by constants of motion. We also prove that the rational classical system is superintegrable and its trajectories are closed. The constants of motion are also generators of symmetry transformations in the phase space that have been integrated for some special cases. These transformations connect different trajectories with the same energy. The coherent states of the quantum superintegrable system are found and they reproduce the closed trajectories of the classical one.
Quantum trajectories are Markov processes that describe the time-evolution of a quantum system undergoing continuous indirect measurement. Mathematically, they are defined as solutions of the so-called Stochastic Schrodinger Equations, which are nonl inear stochastic differential equations driven by Poisson and Wiener processes. This paper is devoted to the study of the invariant measures of quantum trajectories. Particularly, we prove that the invariant measure is unique under an ergodicity condition on the mean time evolution, and a purification condition on the generator of the evolution. We further show that quantum trajectories converge in law exponentially fast towards this invariant measure. We illustrate our results with examples where we can derive explicit expressions for the invariant measure.
We provide a list of explicit eigenfunctions of the trigonometric Calogero-Sutherland Hamiltonian associated to the root system of the exceptional Lie algebra E8. The quantum numbers of these solutions correspond to the first and second order weights of the Lie algebra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا