ترغب بنشر مسار تعليمي؟ اضغط هنا

Variations on the Maiani-Testa approach and the inverse problem

297   0   0.0 ( 0 )
 نشر من قبل Maxwell Hansen
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss a method to construct hadronic scattering and decay amplitudes from Euclidean correlators, by combining the approach of a regulated inverse Laplace transform with the work of Maiani and Testa. Revisiting the original result, we observe that the key observation, i.e. that only threshold scattering information can be extracted at large separations, can be understood by interpreting the correlator as a spectral function, $rho(omega)$, convoluted with the Euclidean kernel, $e^{- omega t}$, which is sharply peaked at threshold. We therefore consider a modification in which a smooth step function, equal to one above a target energy, is inserted in the spectral decomposition. This can be achieved either through Backus-Gilbert-like methods or more directly using the variational approach. The result is a shifted resolution function, such that the large $t$ limit projects onto scattering or decay amplitudes above threshold. The utility of this method is highlighted through large $t$ expansions of both three- and four-point functions that include leading terms proportional to the real and imaginary parts (separately) of the target observable. This work also presents new results relevant for the un-modified correlator at threshold, including expressions for extracting the $N pi$ scattering length from four-point functions and a new strategy to organize the large $t$ expansion that exhibits better convergence than the expansion in powers of $1/t$.


قيم البحث

اقرأ أيضاً

We present here a new MC study of ISB at finite temperature in a $Z_2times Z_2$ $lambdaphi^4$ model in four dimensions. The results of our simulations, even if not conclusive, are favourable to ISB. Detection of the effect required measuring some cri tical couplings with six-digits precision, a level of accuracy that could be achieved only by a careful use of FSS techniques. The gap equations for the Debye masses, resulting from the resummation of the ring diagrams, seem to provide a qualitatively correct description of the data, while the simple one-loop formulae appear to be inadequate.
105 - M.C. Nucci , A.M. Arthurs 2008
We show that given an ordinary differential equation of order four, it may be possible to determine a Lagrangian if the third derivative is absent (or eliminated) from the equation. This represents a subcase of Felsconditions [M. E. Fels, The inverse problem of the calculus of variations for scalar fourth-order ordinary differential equations, Trans. Amer. Math. Soc. 348 (1996) 5007-5029] which ensure the existence and uniqueness of the Lagrangian in the case of a fourth-order equation. The key is the Jacobi last multiplier as in the case of a second-order equation. Two equations from a Number Theory paper by Hall, one of second and one of fourth order, will be used to exemplify the method. The known link between Jacobi last multiplier and Lie symmetries is also exploited. Finally the Lagrangian of two fourth-order equations drawn from Physics are determined with the same method.
We study the SU(3) gauge theory with twelve flavours of fermions in the fundamental representation as a prototype of non-Abelian gauge theories inside the conformal window. Guided by the pattern of underlying symmetries, chiral and conformal, we anal yze the two-point functions theoretically and on the lattice, and determine the finite size scaling and the infinite volume fermion mass dependence of the would-be hadron masses. We show that the spectrum in the Coulomb phase of the system can be described in the context of a universal scaling analysis and we provide the nonperturbative determination of the fermion mass anomalous dimension gamma*=0.235(46) at the infrared fixed point. We comment on the agreement with the four-loop perturbative prediction for this quantity and we provide a unified description of all existing lattice results for the spectrum of this system, them being in the Coulomb phase or the asymptotically free phase. Our results corroborate the view that the fixed point we are studying is not associated to a physical singularity along the bare coupling line and estimates of physical observables can be attempted on either side of the fixed point. Finally, we observe the restoration of the U(1) axial symmetry in the two-point functions.
The infamous strong CP problem in particle physics can in principle be solved by a massless up quark. In particular, it was hypothesized that topological effects could substantially contribute to the observed nonzero up-quark mass without reintroduci ng CP violation. Alternatively to previous work using fits to chiral perturbation theory, in this Letter, we bound the strength of the topological mass contribution with direct lattice QCD simulations, by computing the dependence of the pion mass on the dynamical strange-quark mass. We find that the size of the topological mass contribution is inconsistent with the massless up-quark solution to the strong CP problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا