ﻻ يوجد ملخص باللغة العربية
Generalized Bayes posterior distributions are formed by putting a fractional power on the likelihood before combining with the prior via Bayess formula. This fractional power, which is often viewed as a remedy for potential model misspecification bias, is called the learning rate, and a number of data-driven learning rate selection methods have been proposed in the recent literature. Each of these proposals has a different focus, a different target they aim to achieve, which makes them difficult to compare. In this paper, we provide a direct head-to-head comparison of these learning rate selection methods in various misspecified model scenarios, in terms of several relevant metrics, in particular, coverage probability of the generalized Bayes credible regions. In some examples all the methods perform well, while in others the misspecification is too severe to be overcome, but we find that the so-called generalized posterior calibration algorithm tends to outperform the others in terms of credible region coverage probability.
We use the theory of normal variance-mean mixtures to derive a data augmentation scheme for models that include gamma functions. Our methodology applies to many situations in statistics and machine learning, including Multinomial-Dirichlet distributi
In forecasting problems it is important to know whether or not recent events represent a regime change (low long-term predictive potential), or rather a local manifestation of longer term effects (potentially higher predictive potential). Mathematica
This preprint has been reviewed and recommended by Peer Community In Evolutionary Biology (http://dx.doi.org/10.24072/pci.evolbiol.100036). Approximate Bayesian computation (ABC) has grown into a standard methodology that manages Bayesian inference f
It has become increasingly common to collect high-dimensional binary data; for example, with the emergence of new sampling techniques in ecology. In smaller dimensions, multivariate probit (MVP) models are routinely used for inferences. However, algo
Yang et al. (2016) proved that the symmetric random walk Metropolis--Hastings algorithm for Bayesian variable selection is rapidly mixing under mild high-dimensional assumptions. We propose a novel MCMC sampler using an informed proposal scheme, whic